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Foreword 

Modern or" abstract" algebra is widely recognized as an essential element 
of mathematical education. Moreover, it is generally agreed that the axioma­
tic method provides the most elegant and efficient technique for its study. 
One must continually bear in mind, however, that the axiomatic method is an 
organizing principle and not the substance of the subject. A survey ofalgebraic 
structures is liable to promote the misconception that mathematics is the 
study of axiom systems of arbitrary design. It'seems to me far more interesting 
and profitable in an introductory study of modern algebra to carry a few topics 
to a significant depth. Furthermore I believe that the selection of topics should 
be firmly based on the historical development of the subject. 

This book deals with only three areas of abstract algebra: group theory, 
Galois theory, and classical ideal theory. In each case there is more depth 
and detail than is customary for a work of this type. Groups were the first 
algebraic structure characterized axiomatically. Furthermore the theory of 
groups is connected historically and mathematically to the Galois theory of 
equations, which is one of the roots of modern algebra. Galois theory itself 
gives complete answers to classical problems of geometric constructibility and 
solvability of equations in radicals. Classical ideal theory, which arose from 
the problems of unique factorization posed by Fermat's last theorem, is a 
natural sequel to Galois theory and gives substance to the study of rings. All 
three topics converge in the fundamental theorem of algebraic number theory 
for Galois extensions of the rational field, the final result of the book. 

Emil Artin wrote: We all beliel'e that mathematics is an art. The author 0/ a 
book, the lecturer in a classroom tries to convey the structural beauty 0/ mathe­
matics to his readers, to his listeners. In this allempt he must always(ail. Mathe-

v 



VI Foreword 

matics is logical to be sure; each conclusion is drawn from previously derived 
statements. Yet the whole of it, the real piece of art, is not linear; worse than 
that its perception should be instantaneous. We all have experienced on some 
rare occasions the feeling of elation in realizing that we have enabled our list­
eners to see at a moment's glance the whole architecture and all its ramifications. 
How can this be achieved? Clinging stubbornly to the logical sequence inhibits 
visualization of the whole, and yet this logical structure must predominate or 
chaos would result. t 

A text must cling stubbornly to the logical sequence of the subject. A lec­
turer may be peripatetic, frequently with engaging results, but an author must 
tread a straight and narrow path. However, though written sequentially, this 
book need not be read that way. The material is broken into short articles, 
numbered consecutively throughout. These can be omitted, modified, post­
poned until needed, or given for outside reading. Most articles have exercises, 
a very few of which are used later in proofs. What can be covered in an or­
dinary course and for what students the text is suitable are questions left to 
the instructor, who is the best judge of local conditions. It is helpful, but 
certainly not essential, for the reader to know a little linear algebra for the 
later chapters- in particular Cramer's rule. (Vector spaces, bases, and dimen­
sion are presented in articles 90-95.) 

Finally, 1 must gratefully acknowledge the assistance of Mrs. Theodore 
Weller and Miss Elizabeth Reynolds, who typed the manuscript, and the 
help of Messrs. George Blundall and John Ewing, who gave their time and 
patience to proofing it. 

Providence, Rhode Island 
January 1, 1970 

t Bulletin of the American Mathematical Society, ) 953, p. 474. Reprinted by permission 
of the publisher. 
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Introduction 

Classical algebra was the art of resolving equations. Modern algebra, the 
subject of this book, appears to be a different science entirely, hardly con­
cerned with equations at all. Yet the study of abstract structure which charac­
terizes modern algebra developed quite naturally out of the systematic 
investigation of equations of higher degree. What is more, the modern 
abstraction is needed to bring the classical theory of equations to a final 
perfect form. 

The main part of this text presents the elements of abstract algebra in a 
concise, systematic, and deductive framework. Here we shall trace in a 
leisurely, historical, and heuristic fashion the genesis of modern algebra from 
its classical origins. 

The word algebra comes from an Arabic word meaning " reduction" or 
"restoration ." It first appeared in the title of a book by Muhammad ibn 
Musa al-Khwarizmi about the year 825 A.D. The renown of this work, which 
gave complete rules for solving quadratic equations, led to use of the word 
a lgebra for the whole science of equations. Even the author's name lives on 
in the word algorithm (a rule for reckoning) derived from it. Up to this point 
the theory of equations had been a collection of isolated cases and special 
methods. The work ofal-Khwarizmi was the first attempt to give it form and 
unity. 

The next major advance came in 1545 with the publication of Artis Magnae 

IX 



x Introduction 

sive de Regulis Algebraicis by Hieronymo Cardano (1501-1576). Cardano's 
book, usually called the Ars Magna, or" The Grand Art," gave the complete 
solution of equations of the third and fourth degree. Exactly how much 
credit for these discoveries is due to Cardano himself we cannot be certain. 
The solution of the quartic is due to Ludovico Ferrari (1522-1565), Cardano's 
student, and the solution of the cubic was based in part upon earlier work of 
Scipione del Ferro (1465?-1526) . The claim of Niccolo Fontana (1500?-
1557), better known as Tartaglia (" the stammerer "), that he gave Cardano 
the cubic under a pledge of secrecy, further complicates the issue. The bitter 
feud between Cardano and Tartaglia obscured the true primacy of del Ferro. 

A solution of the cubic equation leading to Cardano's formula is quite 
simple to give and motivates what follows. The method we shall use is due 
to Hudde, about 1650. Before we start, however, it is necessary to recall that 
every complex number has precisely three cube roots. For example, the com­
plex number! = 1 +Oi has the three cube roots, I (itself), w = -t + t V-3, 
and w 2 = -t - t '\[=3. In general, if z is anyone of the cube roots of a com­
plex number w, then the other two are wz and w2 z. 

For simplicity we shall consider only a special form of the cubic equation, 

x 3 + qx - r = O. (1) 

(However, the general cubic equation may always be reduced to one of this 
form without difficulty.) First we substitute u + v for x to obtain a new 
equation, 

(2) 

which we rewrite as 

u3 + v3 + (3uv + q)(u + v) - r = O. (3) 

Since we have substituted two variables, u and v, in place of the one variable 
x, we are free to require that 3uv + q = 0, or in other words, that v = -q/3u. 
We use this to eliminate v from (3), and after simplification we obtain, 

(4) 

This last equation is called the resolvent equation of the cubic (I). We may 
view it as a quadratic equation in u3 and solve it by the usual method to 
obtain 

(5) 

Of course a complete solution of the two equations embodied in (5) gives six 
values of u- three cube roots for each choice of sign. These six values of u are 
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the roots of the sixth-degree resolvent (4). We observe however that if u is a 

cube root of (r/2) + J(r2/4) + (q3/27), then v = -q/3u is a cube root of 

(r/2) - J(r 2/4) + (q3/27). Consequently the six roots of (4) may be con­
veniently designated as u, WU, w2u and v, wv, w2v, where uv = -q/3. Thus the 
three roots of the original equation are 

IXI = U + v, (6) 

where 

r J?7 u
3 

= 2 + "4 + 27 and 
-q 

v=- . 
3u 

In other words, the roots of the original cubic equation (1) are given by the 
formula of Cardano, 

1X=3/~+Jr2 q3 3/~_Jr2 q3 
V 2 4 + 27 + V 2 4 + 27' 

in which the cube roots are varied so that their product is always - q/3. 

For our purposes we do not need to understand fully this complete solution 
of the cubic equation-only the general pattern is of interest here. The im­
portant fact is that the roots of the cubic equation can be expressed in terms 
of the roots of a resolvent equation which we know how to solve. The same 
fact is true of the general equation of the fourth degree. 

For a long time mathematicians tried to find a solution of the general 
quintic, or fifth-degree, equation without success. No method was found to 
carry them beyond the writings of Cardano on the cubic and quartic. Con­
sequently they turned their attention to other aspects ()f the theory of equa­
tions, proving theorems about the distribution of roots and finding methods 
of approximating roots. In short, the theory of equations became analytic. 

One result of this approach was the discovery of the fundamental theorem 
of algebra by 0 ' Alembert in 1746. The fundamental theorem states that every 
algebraic equation of degree n has n roots. It implies, for example, that the 
equation X' - 1 = 0 has n roots-the so-called nth roots of unity-from which 
it follows that every complex number has precisely n nth roots. D'Alembert's 
proof of the fundamental theorem was incorrect (Gauss gave the first correct 
proof in 1799) but this was not recognized for many years, during which the 
theorem was popularly known as " D' Alembert's theorem." 

D'Alembert's discovery made it clear that the question confronting alge­
braists was not the existence of solutions of the general quintic equation, but 
whether or not the roots of such an equation could be expressed in terms of 
its coefficients by means of formulas like those of Cardano, involving only 
the extraction of roots and the rational operations of addition, subtraction, 
multiplication, and division. 
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In a new attempt to resolve this question Joseph Louis Lagrange (1736-
1813) undertook a complete restudy of all the known methods of solving 
cubic and quartic equations, the results of which he published in 1770 under 
the title Refiexions sur fa resolution algebrique des equations. Lagrange 
observed that the roots of the resolvent equation of the cubic (4) can be ex­
pressed in terms of the roots ex l, ex2 , ex3 of the original equation (1) in a com­
pletely symmetric fashion . Specifically, 

v = -t(ex l + wex2 + W2ex3), 

wv = -t(ex3 + wex l + w2ex2), 

u = -t(ex l + wex3 + W2ex2), 

wu = -t(ex2 + wex1 + W2ex3), (7) 

All these expressions may be obtained from anyone of them by permuting 
the occurrences of ex l , ex2 , ex3 in all six possible ways. 

Lagrange's observation was important for several reasons. We obtained 
the resolvent of the cubic by making the substitution x = u + v. Although 
this works quite nicely, there is no particular rhyme nor reason to it-it is 
definitely ad hoc. However Lagrange's observation shows how we might have 
constructed the re,solvent on general principles and suggests a method for 
constructing resolvents of equations of higher degrees. Furthermore it shows 
that the original equation is solvable in radicals if and only if the resolvent 
equation is. 

To be explicit let us consider a quartic equation, 

(8) 

and suppose that the roots are the unknown complex numbers ex l , ex 2, ex3, ex4 . 
Without giving all the details we shall indicate how to construct the resolvent 
equation. First we recall that the fourth roots of unity are the complex 
numbers I, i, i 2

, i 3
, where i =J-=1 and i 2 = -I, i 3 = - i. Then the roots of 

the resolvent are the twenty-four complex numbers 

(9) 

where the indices i, j, k, f are the numbers I, 2, 3, 4 arranged in some order. 
Therefore the resolvent equation is the product of the twenty-four distinct 
factors (x - Uijkl). That is, we may write the resolvent equation in the form 

¢(x) = TI (x - Uijkl) = o. (10) 
ijkl 

Thus the resolvent of the quartic has degree 24, and it would seem hopeless 
to solve. It turns out, however, that every exponent of x in ¢(x) is divisible by 
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4, and consequently 4>(x) = ° may be viewed as a sixth-degree equation in X4. 

What is more, this sixth-degree equation can be reduced to the product of two 
cubic equations (in a way we cannot make explicit here). Since cubics can be 
solved, a solution of the quartic can be obtained by a specific formula in 
radicals. (Such a formula is so unwieldy that it is more useful and ·understand­
able simply to describe the process for obtaining solutions.) • 

For quintic, or fifth-degree, equations Lagrange's theory yields a resolvent 
equation of degree 120, which is a 24th-degree equation in X5. Lagrange was 
convinced that his approach, which revealed the similarities in the resolution 
of cubics and quartics, represented the true metaphysics of the theory of 
equations. The difficulty of the computations prevented Lagrange from 
testing whether his techniques could produce a formula for resolving the 
quintic in radicals. Moreover, with his new insights, Lagrange could foresee 
the point at which the process might break down, and he gave equal weight to 
the impossibility of such a formula. 

A short time afterward, Paolo Ruffini (1765- 1822) published a proof of the 
unsolvability of quintic equations in radicals. Ruffini's argument, given in his 
two-volume Teoria generale delle equazioni of 1799, was correct in essence, 
but was not, in actual fact, a proof. A complete and correct proof was given 
by Niels Henrik Abel (1802- 1829) in 1826 in a small book published at his 
own expense. The brilliant work of Abel closed the door on a problem which 
had excited and frustrated the best mathematical minds for almost three 
centuries. 

There remained one final step. Some equations of higher degree are clearly 
solvable in radicals even though they cannot be factored. Abel's theorem 
raised the question: which equations are solvable in radicals .and which are 
not? The genius Evariste Galois (1811-1832) gave a complete answer to this 
question in 1832. Galois associated to each algebraic equation a system of 
permutations of its roots, which he called a group. He was able to show 
equivalence of the solvability of an equation in radicals, with a property of its 
group. Thus he made important discoveries in the theory of groups as well as 
the theory of equations. Unfortunately Galois' brief and tragic life ended in a 
foolish duel before his work was understood. His theory perfected the ideas 
of Lagrange , Ruffini, and Abel and remains one of the stunning achievements 
of modern mathematical thought. 

At this point we can only leave as a mystery the beautiful relation Galois 
discovered between the theory of equations and the theory of groups- a 
mystery resolved by the deep study of both theories undertaken in the text. 

We can, however, gain some insight into modern abstraction by a short and 
informal discussion of groups. To take an example near at hand, we shall 
consider the group of permutations of the roots 0(1' 0(2, 0(3 of the cubic equa­
tion- which happens to be the Galois group of this equation in general. This 
group consists of six operations, A , B, C, D, E, and I, specified as follows: 
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A leaves ()(. fixed and interchanges the roots ()(2 and ()(3 wherever they occur. 
B leaves ()(2 fixed and interchanges ()(I and ()(3 • 

C interchanges ()(. and ()(2, leaving ()(3 fixed. 
D replaces ()(. by ()(2 at each occurrence, ()(2 by ()(3, and ()(3 by ()( •. 
E replaces ()(l by ()(3 , ()(3 by ()(2 , and ()(2 by ()(l' 

/ is the identity operation, which makes no change at all. 

For example, the result of applying the operation A to v, as expressed in 
(7), is u. We indicate this by writing 

A(v) = u. 

Similarly, the result of applying the operation E to v is wv, or in other words, 
E(v) = wv. Of course, by definition, lev) = v. It is easy to verify that by 
applying the six operations A, B, C, D, E, and / to v, we obtain all six of the 
expressions in (7) for the roots of the resolvent equation. 

These' operations have the property that if any two of them are applied suc­
cessively, the result is the same as if one of the others had been applied once. 
For example, suppose we apply the operation A to v, obtaining u, and then 
apply the operation D to u, obtaining wu. The result is the same as if we had 
applied .the operation C directly to v. We can express this in symbols by 

D(A(v» = C(v). 

In fact this remains true no matter what we put in place of v. That is, the 
result of first applying the operation A and then applying D is the same as 
applying the operation C. We sum this up in the simple equation: DA = C. 
There are many other relations of this sort among these operations. For 
example, we may compute the result of the composite operation EB on any 
function I«()(l, ()(2, ()(3) as follows: 

B(f«()(., ()(2, ()(3)) = 1«()(3' ()(2, ()(.), 

EB(/«()(I' ()(2, ()(3» = E(/«()(3' ()(2, ()(l» = 1«()(2, ()(l, ()(3) = C(/«()(I, ()(2, ()(3»' 

Thus EB = C. The thirty-six relations of this type can be given conveniently 
in a table. We put the result of the composite operation XY in the X row and 
the Y colpmn. 

We observe now that composition of the operations A, B, C, D, E, and / 
has the following properties. 

(1) For any three operations X, Y, and Z, we have 

X( YZ) = (XY)Z. 

In other words, the result of first performing the operation YZ and then the 
operation X is the same as the result of first performing the operation Z and 
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Table 1 

A B C D E I 

A I D E B C A 
B E I D C A B 
C D E I A B C 
D C A B E I D 
E B C A I D E 
I A B C D E I 

then the operation XY. For example, from Table I we see that AB = D and 
BC = D, and therefore 

A(BC) = AD = B = DC = (AB)C. 

Thus we have verified the equation above for the special case where X = A, 
Y = B, and Z = C. This property of the composition of the operations is 
called associativity. To verify associativity completely from Table I we would 
have to make 2 I 6 checks like the one above. 

(2) For any operation X we have 

XI= X= IX. 

I n other words, the composition of any operation X with the identity operation 
I always gives X again. This property is easily checked by examining .the last 
row and the last column of Table 1. 

(3) For any operation X there is precisely one operation Y such that 

XY= 1= YX. 

In other words, whatever the operation X does to the roots (XI' (X2, (X3' Y does 
just the opposite. We call Y the inverse of X and denote it by X -I. It is easy 
to see from Table I that 

Whenever we have a set of operations and a rule for composing them that 
satisfies these three properties, we say that the operations form a group. 

Once we know that a set of operations with a particular rule for composing 
them is a group, we can analyze properties of these operations and their 
composition without regard to the manner in which they are defined or 
the context in which they arose. This simplifies the situation by eliminating 
irrelevant details, and gives the work generality. 

To clarify this process of abstraction, let us consider another group of 
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operations defined in a completely different way. Again we shall have six 
operations, but this time we shall call them by the Greek letters ex, fJ, y, b, e, 
and I. These will operate on the rational numbers (except 0 and I) by the 
following rules: 

1 
ex(x) = - , 

x 

fJ(x) = I - x, 

x 
y(x) = --, 

x-I 

I 
b(x) =-, 

l-x 

x-I 
e(x) = --, 

x 

I(X) = x, 

where x is any rational number except 0 or I. We may compose these opera­
tions and the result will always be one of the other operations. For example, 
we have that bex = y, since 

b(ex(x)) = b - = = -- = y(x). (I) I x 
x I - (l/x) x - I 

Again, we may make a table of all thirty-six compositions of these six opera­
tions. 

Table 2 

exfJybe 

ex b e fJ y ex 

fJ e b y ex fJ 
y b e ex fJ y 
b y ex fJ e b 
e fJ y ex I b e 

ex fJ y b e 

It is immediately apparent that Table 2 has a strong resemblance to Table I. 
For example, ev.ery occurrence of A in the first table corresponds to an occur­
rence of ex in. the second. Similarly the letters Band fJ occur in the same posi­
tions in each table. In fact Table 1 may be transformed into Table 2 by making 
the substitutions: 

A -+~, B -+ fJ, C -+ y, D -+ b, E -+ e, 1-+ l. 

In other words, these two groups have the same structure as groups even 
though the individual operations are defined in quite different ways. To put 
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it another way, all the facts which depend solely upon the way operations are 
composed will be the same for both groups . In such a case two groups are 
said to be isomorphic. Group theory studies the properties of groups which 
remain unchanged in passing from one group to another isomorphic with it. 

Group theory was called the " theory of substitutions " until 1854 when the 
English mathematician Arthur Cayley (1821 - 1895) introduced the concept of 
abstract group. The convenience and power of the abstract approach to group 
theory was evident by the end of the nineteenth century. Subsequent abstrac­
tions, such as field and ring , have also proved to be powerful concepts . The 
success of abstract thinking in algebra has been so enormous that the terms 
modern algebra and abstract algebra are synonymous. 

Abstraction is simply the process of separating form from content. We 
abstract whenever we pass from a particular instance to the general case. Even 
the simplest mathematics, ordinary arithmetic, is an abstraction from physical 
reality. In modern mathematics we abstract from previous mathematical 
experience and reach a new and higher plane of abstraction . Indeed , each 
mathematical generation abstracts from the work of preceding ones, continu­
ally distilling and concentrating the essence of old thought into new and more 
perfect forms. The rewards are great. Not only does abstraction greatly en­
hance our understanding, it also dramatically increases the applications of 
mathematics to practical life. Even such an apparently recondite subject as 
group theory has applications in crystallography and quantum mechanics. 
Over centuries modern algebra has grown into a large body of abstract 
knowledge worthy of study both for its intrinsic fascination and extrinsic 
application . 



Set Theory 

Chapter 1 
Set theory is the proper framework for abstract mathematical thinki"ng. All 

of the abstract entities we study in this book can be viewed as sets with 
specified additional structure. Set theory itself may be developed axiomati­
cally, but the goal of this chapter is simply to provide sufficient familiaritywith 
the notation and terminology of set theory to enable us to state definitions 
and theorems of abstract algebra in set-theoretic language. It is convenient to 
add some properties of the natural numbers to this informal study of set 
theory. 

It is well known that an informal point of view in the theory of sets leads 
to contradictions. These difficulties all arise in operations with very large 
sets. We shall never need to deal with any sets large enough to cause trouble in 
this way, and, consequently, we may put aside all such worries. 



2 1 Set Theory 

The Notation and 
Terminology of Set Theory 

1. A set is any aggregation of objects, called elements of the set. Usually 
the elements of a set are mathematical quantities of a uniform character. 
For example, we shall have frequent occasion to consider the set of 
integers { ... , -2, -1,0, 1,2, ... }, which is customarily denoted Z (for the 
German" Zahlen," which means" numbers "). We shall use also the set Q of 
rational numbers-numbers which are the quotient of two integers, such as 
7/3, - 4/5, 2. 

To give an example of another type, we let K denote the set of coordinate 
points (x, y) in the xy-coordinate plane such that x 2 + y2 = I. Then K is the 
circle of unit radius with the origin as center. 

2. To indicate that a particular quantity x is an element of the set S, we 
write XES, and to indicate that it is not, we write x ¢ S. Thus - 2 E Z, but 

1/2 ¢ Z; and 1/2 E Q, but)2 ¢ Q. 
A set is completely determined by its elements. Two sets are equal if and only 

if they have precisely the same elements. In other words, S = T if and only if 
XES implies x E T and x E T implies XES. 

It will be convenient to write x, y, Z E S for XES, YES, and Z E S. 

3. A set S is a subset of a set T if every element of S is an element of T, or in 
other words, if XES implies x E T. To indicate that S is a subset of Twe write 
SeT. If SeT and T c S, then XES implies x E T and x E T implies XES, 
so that S = T. 

The empty set 0 is the set with no elements whatever. The empty set is a 
subset of every set T. If S is a subset of T and neither S = 0 nor S = T, then 
S is called a proper subset of T. 

4. Frequently a set is formed by taking for its elements all objects which have 
a specific property. We shall denote the set of all x with the property P by 
{x I P(x)}. Thus, 

Z = {x I x is an integer}. 

To indicate that a set is formed by selecting from a given set S those 
elements with property P, we write {x E S I P(x)}. It is clear that {x E S I P(x)} 
is always a subset of S. For example, the set of even integers, 

2Z = {x E Z I x = 2y, y E Z}, 

is a subset of Z. 



The Notation and Terminology of Set Theory 3 

5. The intersection of two sets Sand T is the set S n T of elements common 
to both. In other words, 

SnT={X\XES and xET}. 

The intersection S nTis a subset of both Sand T. The sets Sand Tare 
said to be disjoint if S n T = 0. 

We note the following properties of intersection: 

(a) A n (8 n C) = (A n B) n C, 
(b) An 8 = B n A, 
(c) A n A = A and A n 0 = 0, 
(d) An B = A if and only if A c B. 

Let Sl, S2, . .. , Sn be sets. Then we shall write 

as an abbreviation for 

Sl n S2 n ... n Sn = {x \ x E Sj for each i = I, 2, .. . , n}. 

6. The union of two sets Sand T is the set S u T of elements in S or T or in 
both Sand T. In other words, 

SuT= {x\xESandJorxET}. 

Sand T are both subsets of S u T. 
The following properties of union are analogous to those of intersection: 

(a) Au (8 u C) = (A u B) u C, 
(b) A u B = B u A, 
(c) A u A = A and A u 0 = A, 
(d) A u 8 = B if and only if A c B. 

Let Sl , S2, ... , Sn be sets. Then we shall write U7= 1 Sj as an abbreviation 
for 

Sl u S2 U ... U Sn = {x \ x E Sj for at least one i = I, 2, ... , n}. 

7. Intersection and union are related by the following distributive laws: 

(a) A u (B n C) = (A u B) n (A u C), 
(b) A n (8 u C) = (A n B) u (A n C). 

8. The difference of two sets Sand T is the set S - T of elements of S which 
are not elements of T. In other words, 
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S-T= {xESlx¢T}. 

S - T is always a subset of S. 
The difference of sets has the following properties: 

(a) A - B = 0 if and only if A c B, 
(b) A - B = A if and only if A () B = 0, 
(c) A - B = A - C if and only if A () B = A () C, 
(d) A - 0 = A and A - A = 0, 
(e) A - (B () C) = (A - B) u (A - C), 
(f) A - (B u C) = (A - B) () (A - C). 

Sa. The symmetric difference of two sets A and B is the set 

A * B = (A - B) u (B - A). 

Show that A * B = (A u B) - (A () B). Show that A * B = 0 if and only if 
A = B. Prove that the symmetric difference is an associative operation on sets, 
that is to say, A * (B * C) = (A * B) * C for any three sets A, B, and C. 

Sp. If every set in a discussion is a subset of a given set ~(, then we call 21 the 
universe (of that discussion). The complement of a subset A of ~( is the set 
A* = Il( - A. Demonstrate the following properties of complements for 
subsets of 21: 

(A*)* = A, (A u B)* = A* () B*, and (A () B)* = A* u B*. 

Show that A * * B* = A * B. 

9. The cartesian product of two sets Sand T is the set S x T of ordered pairs 
(x, y) with XES and yET. Two elements (x, y) and (x', y') of the cartesian 
product S x T are equal if and only if x = x' and y = y'. Note that the car­
tesian product T x S is not the same as the cartesian product S x T. (Why?) 

As an example we may consider the coordinate plane as the set R x R 
where R denotes the set of real numbers. Each point of the coordinate plane 
is specified by an ordered pair (x, y) of real numbers, and each such ordered 
pair specifies a point in the plane. Note that (x, y) = (y, x) if and only if x = y. 

Let [a, b] = {x E R I a::;; x::;; b} denote the closed interval from a to b. 
Then the cartesian product [I, 3J x [0, I] may be represented in the coordin­
ate plane by Figure I. 

Let SI' S2, ... , Sn be sets. We define 

n 

X Si = SI X S2 X ••• X Sn 
j= 1 

to be the set of ordered n-tuples (XI' x 2 , ... , x n) with Xi E Si. We shall call 
Xi the i-th coordinate of (Xl' X2, ... , x n)· 
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[1,3]x[O, I] 

Figure 1 . 

9cx. Let A and C be subsets of S, and let Band D be subsets of T. Prove the 
following statements about subsets of S x T: 

(A x B) II (C x D) = (A II C) x (B II D), 

(A u C) x (B u D) = (A x B) u (A x D) u (C x B) u (C x D), 

(A x B) - (C x D) = (A x (B - D)) u «A - C) x B). 

9p. Let R, S, and T be sets. Are the sets (R x S) x T and R x (S x T) the 
same? 

Mappings 

10. Mapping is an abstraction of the concept of function. While a function 
assigns to a given number another number, a mapping assigns to a given 
element of one set an element of another. In other words, a mappingffrom a 
set X to a set Y is a rule which assigns to each element x E X an element y E Y. 
To remove the ambiguity residing in the word rule, it is necessary to recast this 
definition in the context of set theory. 

A mapping f with domain X and range Y is a subset of X x Y such that for 
each element x E X there is precisely one element Y E Y for which (x, y) Ef 

We writef: X -> Yto indicate thatfis a mapping with domain X and range Y. 
If f: X -> Yand (x, y) E/, we usually write fx for y. It is now fashionable to 
writef: X 1-+ y in place of (x, y) Ef 

Since mappings are defined as sets (of a special type), it is clear what 
equality of mappings should mean. Two mappings/, g: X -> Yare equal if 
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they are equal as subsets of X x Y. It follows that f = g if and only if fx = gx 
for all x EX. 

The identity mapping of a set X is 

Ix = {(x,y) E X x Xix =y}. 

lOa. An arbitrary subset of the cartesian product X x Y is called a relation 
with domain X and range Y. For any relation ReX x Yand any element 
x E X, we set 

Rx = {y E YI (x, y) E R}. 

A mapping is a special type of relation. Specifically, a relation ReX x Y is 
a mapping from X to Y if and only if for each x E X, Rx consists of precisely 
one element of Y. Let R denote the set of all real numbers. Which of the 
following relations are mappings from R to R? 

RI = {(x, y) E R x R I x 2 + y2 = I}, 
R2 = {(x, y) E R x R I xy = I}, 

R3 = {(x, y) E R x R I X4 + y3 = I}, 

R4 = {(x, y) E R x R I x3 + y4 = I}, 

Rs = {(x, y) E R x R I J~ + Jy = I}. 

11. Letf: X --> Y be a mapping. For any subset A of X, the image of A by f is 
the set 

fA = {y E Yly =fx, x E A}. 

The setfX is also denoted Imfand called simply the image of! The mapping 
fis called onto if Imf = Y. If Imfis a proper subset of Y, thenfis called into. 

12. Let f: X --> Ybe a mapping. For any subset B of Y, the inverse image of B 
by f is the set 

riB = {x E Xlfx E B}. 

Note that f- I Y = X. The mapping f is said to be one to one if for each 
y E Y,f-I {y} has at most one element. (I-I {y} = 0 if y ¢ 1m!) 

12a. Letf: X --> Y be a mapping, let A and B be subsets of X, and let C and 
D be subsets of Y. Give a proof or counterexample for each of the fol­
lowing assertions: 

f(A u B) =fA ufE, 

f(A n B) = fA nfB, 

f(A - B) =fA - fB, 

rl(lA) = A, 

rl(CU D)=rICuf-ID, 
rl(Cn D)=f-ICnf-ID, 

rl(C- D)=rIC-rID, 
f(l-IC) = c. 

Which of the false statements become true when f is one to one? 
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12p. For what integral values of n is the mapping f: R -> R given by 
f(O) = 0 and fx = x" for x =I- 0, a one-to-one mapping? 

13. A mappingf: X -> Yis a one-fo-one correspondence iffis one to one and 
onto. This is equivalent to saying that for each y E Y,f - I {y} has precisely one 
element. 

If f: X -> Y is a one-to-one correspondence, we can define an inverse map­
pingf- I

: Y -> X which is also a one-to-one correspondence. In fact, we just 
set 

r l = {(y, x) E Y x XI (x, y) E/}. 

It follows that y = fx if and only if x = f - Iy. Note that (/-1) -I = f 

13a. Let Nk = {I, 2, . .. , k} . Define a one-to-one correspondence from 
Nk x NI to Nkl . 

13p. If Sand T denote sets, define a one-to-one correspondence from S x T 
to T x S. 

13y. If R, S, and T denote sets, define a one-to-one correspondence from 
(R x S) x T to R x (S x T). 

14. The power set of a set X is the set 2x, whose elements are the subsets of X. 
In other words, 

2X = {SISc X}. 

Theorem. There is no one-fo-one correspondence f : X -> 2X for any sef x. 

Proof Suppose there were a set X with a one-to-one correspondence 
f: X -> 2x. For each x E X,fx is a subset of X and either x Efx or x rf:fx. Let 

R = {x E XI x rf:fx}. 

Since a one-to-one correspondence is onto, R = fa for some a E X. Then 
a Efa = R implies a rf:fa, while a rf:fa implies a E R = fa. This is a contra­
diction. 

14a. Construct a one-to-one correspondence 

where A and B are disjoint sets. 

14p. Let Nk = {I , 2, ... , k}. Construct a one-to-one correspondence between 
the sets 2Nk and N2k = {I, 2, 3, ... , 2k}. 
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15. Let N denote the set of natural numbers {I, 2, 3, ... } and let Nk denote 
the subset {1,2, ... ,k}. 

A set S is finite if it is in one-to-one correspondence with one of the sets 
Nk , or if it is empty. ]f there is a one-to-one correspondence from a set S to 
N k , then the number of elements in Sis k. A set which is not finite is called 
infinite. We cannot properly speak of the number of elements in an infinite set. 
However, we shall say that two infinite sets have the same cardinality if 
there is a one-to-one correspondence between them. 

A set S is countable if it is in one-to-one correspondence with N, the set 
of natural numbers. For example, a one-to-one correspondence f: N -> Z is 
given by 

fk = (-I)k[k/2], 

where [x] denotes the greatest integer not exceeding x. Consequently, the set 
Z of all integers is countable. A one-to-one correspondence ,p: N x N -+ N is 
given by 

,p(m, n) = t(m + n - 2)(m + n - I) + n. 

Consequently, N x N is a countable set. 
Not every infinite set is countable: there can be no one-to-one correspond­

ence between N and its power set 2N; hence, the set 2N is uncountable. (We 
shall apply the words countable and uncountable to infinite sets only.) 

15a. For any finite set S, let * S denote the number of elements of S. Prove 
that for any finite set S, *(2s) = 2("'S). 

15p. Prove that for any two finite sets Sand T, 

*(S u T) + *(S n T) = *S + *T. 

151. Prove that for any two finite sets Sand T, 

*(S x T) = (*S)(*T). 

ISo. Prove that the cartesian product of two countable sets is countable. 

15£. Prove that the set Q of all rational numbers is countable. 

151;. Let X'" denote the set of sequences of elements of X. Show that X'" is 
uncountable if X has two or more elements. (" Sequence" here simply means 
an infinite string, XI, X 2 , X 3 , •.• , of elements of X.) 

1511. Let S be a set with a countable number of elements. Show that a subset 
of S is either finite or countable. 
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159. Explain why a finite set cannot be in one-to-one correspondence with 
one of its proper subsets. (In some versions of set theory this is used as the 
defining property for finiteness.) 

16. Let f: X -+ Yand g: Y -+ Z be mappings. Their composite is the map­
ping gf: X -+ Z determined by (gf)x = g(fx) . We may define gf more formally 
by 

gf= {(x,z)EXxZI(fx,z)Eg}. 

If f: X -+ Y, g: Y -+ Z, and h: Z -+ Ware mappings, then h(gf) = (hg)f; 
that is to say, composition of mappings is associative. To prove this, we merely 
need to observe that the two mappings h(gf) and (hg)f have the same value on 
each element x E X: 

(h(gf))x = h«gf)x) = h(g(fx)) = (hg)(fx) = «hg)f)x. 

If f: X -+ Y is a one-to-one correspondence with inverse f- 1
: Y -+ X, then 

f-1f = I x and ff- 1 = I y. Note that for any mapping f: X -+ Y, we always 
have fIx =f= Iy f 

Equivalence Relations 

17. An equivalence relation on a set X is a subset R of X x X such that: 

(a) (x, x) E R for all x E X, 
(b) (x, y) E R implies (y, x) E R, 
(c) (x, y) E Rand (y, z) E R imply (x, z) E R. 

Frequently we prefer to write x == y (R) in place of (x, y) E R. 
If R is an equivalence relation on X, then for x E X, the R-equivalence class 

of x is the set 

[xlR = {y E XI x == y (R)} = {y E XI (x, y) E R}. 

When only one equivalence relation is under consideration, we usually suppress 
the subscript R on [xl R • 

For any equivalence relation R on X, [xlR = [YlR if x == y (R), and [xlR n 
[y lR = 0 if x =1= y (R). The quotient of X by R is the set XI R of equivalence 
classes [x lR , where x runs through the elements of X. [ lR: X -+ XI R will 
denote the classifying map, defined by [ lR X = [xl R . 



10 1 Set Theory 

17~. Let X be a set partitioned into disjoint subsets, Xl' X2 , ••• , X •. (Every 
element belongs to precisely one of the subsets.) Define an equivalence relation 
R on X for which XjR = {Xl' X2 , ••• , X.}. 

17p. Prove that the intersection of equivalence relations is again an equiva­
lence relation. 

17y. Let R be an equivalence relation on X and S an equivalence relation on 
XjR. Find an equivalence relation T on X such that (XjR)jS is in one-to-one 
correspondence with XjT under the mapping [[X]R]SH [xh. 

18. Congruence of Integers. Let m be a natural number, and let 

Rm= {(a,b)EZ x ZJa=b+km;kEZ}. 

Rm is an equivalence relation on the set Z of all integers and is called congru­
ence modulo m. The number m is called the modulus. We write a = b mod m to 
indicate that (a, b) E Rm; similarly, we write a ¢ b mod m to indicate that 
(a, b)¢ Rm. 

The equivalence class of a E Z will be denoted [a]m; that is to say, 

[a]m = {x E Z J x = a mod m} = {x E Z J x = a + km; k E Z}. 

Every a E Z is congruent modulo m to one of the numbers 0,1, . .. , m - 1. In 
fact if r is the smallest nonnegative integer in [a]m' then ° ::;; r < m and 
a = r mod m. It follows that the quotient set Zm = ZjRm is simply 

{[O]m, [I]m, ... , [m - I]m}· 

18a. Prove that a = a' mod m and b = b' mod m imply that 

a + b = a' + b' mod m and ab = a'b' mod m. 

(This allows us to define sum and product on Zm by the rules [a]m + [b]m = 

[a + b]m and [a]m[b]m = [ab]m·) 

18p. Let Rm denote congruence mod m on the set of integers Z. What is the 
equivalence relation Rm (\ R. ? 

18y. Let 

R = {(a, b) E Z X Z Ja 2 = b2 mod 7}. 

Into how many equivalence classes does R partition Z? 

19. Frequently, we are given a mappingf: X -+ Yand an equivalence relation 
R on the set X, and we want to define a mapping ¢: Xj R -+ Y such that 
¢[ ]R = f Clearly, this can be done, if at all, only by setting ¢[X]R = fx. 
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When does this make sense? If x and yare two elements of X which are 
equivalent with respect to the relation R, then we have [x 1R = [y 1R; it will have 
to follow that l/>[x1 R = 1/>[Y1R, or what is the same thing,Jx = fy. We see now 
that the formula l/>[x1R = fx defines a mapping 1/>: X/R ---> Y if and only if for 
all (x, y) E R, we have fx = fy. When this condition holds, we say that the 
mapping I/> is well defined. (The terminology is idiotic: I/> is not defined at all 
unless f has the required property.) 

To give an example, suppose that we want to define a mapping from the 
set Zm (defined in 18) to any set Y by means of a mappingf: Z ---> Y. To do 
this, we must check that for any integers x and y, the condition x == y mod m 
implies fx = fy. 

1901. When is the mapping 1/>: Zm ---> Zn given by I/> [x 1m = [x 1n well defined? 

19p. Show that addition of elements of Zm is well defined by the rule 

Properties of the Natural Numbers 

20. Let N denote the set of natural numbers {I, 2,"3, .. . }. We shall take the 
following statement as an axiom: 

Every nonempty subset of N has a smallest element. 

This axiom has, as an immediate consequence, the principle of mathemat­
ical induction: 

If S is a subset of N such that 1 E S and such that n E S implies n + I E S, 
then S = N. 

In fact the hypotheses on S imply that the set N - S has no smallest element. 

20a. Prove the alternate form of the principle of mathematical induction: If 
S is a subset ofN such that Nl C S and such that Nk C S implies Nu 1 C S, then 
S = N. (Recall that Nk = {I, 2, ... , k}.) 

20p. Prove by induction the formulas 

n n 

I j = tn(n + 1) and I j2 = in(n + 1)(2n + 1). 
i==l ;=1 
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20y. Prove by induction the binomial theorem: 

where (k
n

) denotes the binomial coefficient n! k) . 
k! (n - 1 

21. The Division Theorem. For all natural numbers a, bEN there exist 
unique nonnegative integers q and r such that a = qb + rand r < b. 

Proof. Let N denote the set of nonnegative integers. It follows from 20 
that every nonempty subset of N has a smallest element. The set 

S = {x E Nix = a - kb, kEN} 

is not empty because a E S. Let r be the smallest element of S. Clearly, 
r = a - qb for some q EN and r < b (otherwise r - b E S, contradicting 
minimality of r). The uniqueness of r is apparent, and r = a - qb = a - q'b 
implies q' = q, which shows uniqueness of q. 

21a. Let bEN, b > 1. Show that every natural number can be represented 
uniquely in the form 

where ro, rl , ••• , rk E {O, 1, ... , b -I}. 

22. A number bEN divides a number a E N provided a = qb for some 
q EN. To indicate that b divides a, we write b 1 a, and to indicate that it does 
not, b % a. Thus, 214, but 2% 5. For any natural number n we always have 
lin and n 1 n. If n #- 1 and if I and n are the only natural numbers dividing n, 
then n is called a prime number. The first ten primes are 2, 3, 5, 7, II, 13, 17, 
19,23,29. The number of prime numbers is infinite (22y). 

22a. Show that every natural number other than 1 is divisible by some prime. 

22JJ. Construct a natural number which is not divisible by any of the prime 
numbers in a given list of primes PI' P2 , ... , Pk . 

22y. Prove that the number of primes is infinite. 

23. If a and b are natural numbers, then among all the natural numbers 
dividing both a and b there is a largest one, which we call the greatest common 
divisor and denote by (a, b). For example, (6, 8) = 2, (24, 30) = 6, (5, 7) = 1. If 
(a, b) = 1, then we say that q and b are relatively prime or that a is prime to b. 
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Theorem. If a and b are natural numbers, then there exist integers u and v 
such that (a, b) = ua + vb. 

Proof. Let 

III = {x E Nix = ma + nb for m, n E Z}. 

Since a, bEN and a = 1 . a + 0 . b, b = 0 . a + 1 . b, the set III is not empty 
and therefore has a smallest element d = ua + vb for some u, v E Z. We claim 
that dl x for all x E Ill. Otherwise, for some x E ~[ we have x = qd + r where 
o < , < d. Since x = ma + nb for some m, nEZ, we have 

r = x - qd = (ma + nb) - q(ua + vb) = (m - qu)a + (n - qv)b. 

Consequently, r E III and r < d, which contradicts the choice of d as the 
smallest element of Ill. Thus, the claim is proved. It follows that d 1 a and d 1 b, 
and therefore 1 :5: d :5: (a, b). However, d = ua + vb, and as a result we must 
have (a, b) 1 d, and hence (a, b) :5: d. It follows that (a, b) = d = ua + vb. 

Corollary. If p is a prime number and pi ab, then pia or pi b. 

Proof. Suppose p % a. Then (p, a) = 1 = ua + vp for some u, v E Z. There­
fore b = uab + vpb, and p 1 ab implies p 1 b. 

23cx. Prove that dEN is the greatest common divisor of a, bEN if and 
only if 

(1) dla and dlb, 
(2) cia and c 1 b imply c 1 d. 

23~. Prove that m = m' mod n implies (m, n) = (m', n). 

231. If a and b are natural numbers, then among all the natural numbers 
divisible by both a and b there is a smallest, which we call the least common 
multiple and denote by [a, b]. Show that a 1 c and b 1 c imply [a, b]1 c. Show also 
that (a, b)[a, b] = abo 

230. Prove that a = b mod m and a = b mod n imply a = b mod [m, nj. 

23£. Let a, b, c E N. Prove that 

[a, (b, c)] = ([a, b], [a, cD and (a, [b, cD = [(a, b), (a, c)]. 

23~. The Euclidean Algorithm. Given a, bEN, define a decreasing sequence 
of natural numbers, 

b = '0> r 1 > ... > 'n > r n + 1 = 0 
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by the requirement that ri- I = qiri + ri+1 for i = 0, I, ... , n. (Let r -I = a so 
that a = qo b + rl') Show that rn = (a, b). (This method of computing the 
greatest common divisor is found at the beginning of the seventh book of 
Euclid's Elements.) 

2311. Prove that if p is prime and a, b E Z, 

(a + by == aP + bP modp. 

239. Let al> a2 , ... , an E Z, not all zero. Define the greatest common 
divisor (ai, a2 , ..• , an) and prove the analogue of the theorem in 23. 

24. The Fundamental Theorem of Arithmetic. Every natural number greater 
than I can be expressed uniquely as a product of prime numbers. 

Proof. First we show that each n EN, n> I, is divisible by some prime. 
Let S denote the set of natural numbers greater than I which are not divisible 
by any prime. If S is not empty, then S has a smallest element m. Since m I m, 
we cannot have m prime. Therefore, m = ab where 1 < a < m. Consequently, 
a If S and there is a prime p which divides a. Then pi m also and m If S, a con­
tradiction. Therefore, S is empty. 

Next we show that each n EN, n > I, is a product of primes. Let S denote 
the set of natural numbers greater than I which cannot be written as a product 
of primes. If S is not empty, then S has a smallest element m and by the argu­
ment above, m = pm' for some prime p. Since m' < m, we have m' If S. As a 
result m' can be written as a product of primes, PIP2 ... Pk, or else m' = I. 
Therefore, either m = PPIP2 . " Pk or m = P, and we have that m is a product 
of primes, which contradicts m E S. Consequently, S is empty. 

Finally, suppose there is a natural number greater than I which can be 
written in two ways as a product of primes: 

Then PI I qlq2 ... ql and, by repeated use of the corollary of 23, we may con­
clude that PI divides one of the q's, say PI I ql' Since ql is prime, it follows that 
PI = ql' As a result 

and a similar argument shows that P2 = q2 (renumbering the q's if necessary). 
Continuing in the same manner, we arrive at the conclusion that k = I and the 
two representations of n are identical (except for thp order of the factors). 

Corollary. Every natural number greater than I can be expressed uniquely 
in the form p~lp~2 ... pZk lI'here PI' pz, ... , Pk are prime numbers and 
VI' Vz , ... , vk EN. 
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(a, b) = p~;n(vl,pll p'2;n(v"p,) ,., p;;;n("k'Pk) , 

[a, b] = p~ax(vl. P Il p'2ax (,',. p,) , •• p;;aX(Vk, pd • 

24~. Compute the number of divisors of n = P~'p2' .. , p~k. 

25. The Euler Function <jJ. For any natural number n we let <jJ(n) denote the 
number of integers k such that I ~ k ~ nand (k, n) = I. <jJ is called the 
totient, indicator, or Euler <jJ-junction. Since the greatest common divisor 
(k, n) depends only upon the congruence class [kJ" (23~), we may define <jJ(n) 
in another way as the number of elements in the set 

z~ = {[k]" E Z" I (k, n) = I} . 

Neither of these characterizations is useful in computing values of <jJ, but we 
shall use both to express <jJ(n) in terms of the unique factorization of n as a 
product of prime powers. 

Proposition. If P is prime, then <jJ(p") = p" (I - ~) 

Proof Clearly, (k, pO) = I if and only if p,r k. There are p"-' numbers 
between I and p" which are divisible by p, namely 

Ip, 2p, 3p, ... , (p"-')p. 

Therefore, <jJ(p") = p" - p"-' = P"(I - ~). 

Proposition. If (m, n) = I, then <jJ(mn) = <jJ(m)<jJ(n). 

Proof We shall construct a one-to-one correspondence 

The proposition then follows immediately, because Z~," has <jJ(mn) elements 
and Z~, x Z~ has <jJ(m)<jJ(n) elements. The mapping p is given by 

perk],"") = ([k]," , [k]"). 

It is routine to verify that p is well defined. 
The mapping p is one-to-one. Suppose p([k]",,,) = p([k'],""), Then we have 

[k]m = [k ' ]", and [k]" = [k ' ]" , or what is the same thing, 

k == k' mod m and k == k' mod n. 
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Since (m, n) = I, it follows that 

k == k' mod mn and [klmn = [k'lmn 

(see 23/)). 
The mapping p is onto. Since (m, n) = I, there are integers u, v E Z such that 

um + vn = I. Given [al m E Z;" and [bln E Z~, we set k = bum + avn. Then 

k == avn == a mod m and k == bum == b mod n. 

Hence, [klm = [alm and [kln = [bln . What is more, (k, mn) = I. If p is a prime 
and pi mn, then pi m or pin. If pi m, then k == a mod p and a of; 0 mod p 
because (a, m) = I; therefore p,r k. Similarly, pin implies p,r k. This shows 
that p I mn implies p,r k for any prime p, which implies that (k, mn) = I. 

Theorem. For every natural number 

where PI ' P2, ... , Pk are the distinct primes dividing n. 

Proof. Write n in the form p~lp~2 ... pZ' as guaranteed by the corollary in 
24. From the two propositions above it follows that 

and the formula of the theorem follows immediately. 

25a. Prove that Ldln ¢(d) = n. Ldln denotes the sum over all the divisors of n. 
For example, 6 has the divisors I, 2, 3, and 6, so that 

L ¢(d) = ¢(I) + ¢(2) + ¢(3) + ¢(6). 
dl6 

25~. The Mobius Function. For every natural number n we define a number 
J1(n) by the rules: 

(I) J1(I) = I, 
(2) J1(n) = 0 if p21 n for some prime p, 
(3) /len) = (_I)k if n = PIP2 ... Pk is a product of distinct primes. 

Show that (m, n) = I implies J1(mn) = /l(m)/l(n) and that 

¢(n) = L /l(d) . (n/d). 
din 



Group Theory 

Chapter 2 
The theory of groups is the proper place to begin the study of abstract 

algebra. Not only were groups the first algebraiqtructures to be characterized 
axiomatically and developed systematically from an abstract point of view, 
but more important, the concept of group structure is basic to the development 
of more complex abstractions such as rings and fields. Furthermore, group 
theory has an enormous number of applications to many diverse areas of 
mathematics and physics. Hardly any other area of mathematics can match 
the theory of groups in elegance and usefulness. 

This chapter is an exposition of the elementary theory of groups with 
emphasis on groups of finite order. Three advanced topics (the Sylow 
theorems, the 10rdan-Holder theorem, and simplicity of alternating groups) 
are included for applications and depth. 

The Definition of Group Structure 

26. A group is a set G with an operation (called the group product) which 
associates to each ordered pair (a, b) of elements of G an element ab of G 
in such a way that: 

17 
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(1) for any elements a, b, c E G, (ab)c = a(bc); 
(2) there is a unique element e E G such that ea = a = ae for any element 

aEG; 
(3) for each a E G there is an element a-I E G such that a-Ia = e = aa- I. 

To be precise a group product should be viewed as a mapping 
j1: G x G --+ G, and the group should be denoted (G, 11) to emphasize the role 
of the product. This notation would distinguish groups (G,I1) and (G, v) 
which have the same underlying set but different products. However, such 
strict formalism obscures intuition and creates notational nuisances. 

A set G = {e} with the single element e and product defined by ee = e 
satisfies (1), (2), and (3) trivially and is consequently called a trivial group. 

2611. A semigroup is a set S with a product which associates to each ordered 
pair (a, b) of elements of S an element ab E S in such a way that (ab)c = a(bc) 
for any elements a, b, c E S. Show that the set of all mappings from a given 
set X to itself forms a semigroup in which the product is composition of 
mappings. Show that the set of all one-to-one correspondences of X with 
itself forms a group under composition. 

26~. Let S be a semigroup with an element e such that ea = a = ae for all 
a E S. Show that e is unique. (This indicates that the word unique in (2) above 
is superfluous. It is used to insure the absolute clarity of (3).) 

26y. Let S be a semigroup with an element e such that ea = a for all a E S 
and such that for every a E S there exists a - I E S for which a-Ia = e. Prove 
that S is a group. 

26/). Let S be a semigroup with a finite number of elements. Suppose that 
the two cancellation laws hold in S; that is, if either ab = ac or ba = ca, then 
b = c. Show that S is a group. 

261:. Let G be a group. Define a new product on G by a * b = ba for any 
a, bEG. Show that G* (the set G with product *) is a group. G* is called the 
opposite group to G. 

261;,. Let G and G' be groups. Define a product operation on the set G x G' 
by the rule (a, a')(b, b') = (ab, a' b'). Show that G x G' is a group under this 
product. (G x G' is called the direct product of G and G' .) 

2611. A symmetry of a geometric figure is a one-to-one correspondence of 
the figure with itself preserving the distance between points; in other words, a 
symmetry is a self-congruence. The set of all symmetries of a given figure 
forms a group under composition. (Why?) For example, the group of sym­
metries of a line segment AB consists of two elements, the identity and the 
symmetry reversing A and B. Show that a symmetry of an equilateral triangle 
ABC is completely determined by the way it transforms the vertices. Make a 
complete list of the elements of the group of symmetries of ABC. 
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A 

B c 
Figure 2 

269. The group of symmetries of a regular polygon of n sides is called the 
dihedral group Dn. How many elements does Dn have? 

26.. Let V be a set with the four elements e, a, b, c on which a product is 
defined by the" multiplication table" in Table 3. Verify that V is a group. (V 
is known as the four-group or Viergruppe of Felix Klein.) 

Table 3 

e a b c 

e e a b c 
a a e c b 
b b c e a 
c c b a e 

26K. Show that the power set 2x of any set X is a group under the operation 
of symmetric difference A * B (80). 

261.. Show that the set (-1, I) of real numbers x such that -I < x < I 
forms a group under the operation x . y = (x + y)/(I + xy). 

26/l. Find an operation on the set (0, I) of real numbers x, ° < x < I, which 
makes (0, I) a group in such a way that the inverse of x is I-x. 

26v. Generalize the definition of direct product given in 26~ to obtain a defi­
nition of the direct product G1 x G2 X ••• x Gn of n groups, G1 , G2 , ••• , Gn • 

27. Statements (I), (2), and (3) of 26 are known as the axioms of group 
structure. Group structure may be axiomatically characterized in several 
ways, but the particular way given here is the most direct and convenient. 

(1) is called the associativity axiom , because it states that the two ways 
of associating a product of three elements are equal. Consequently, the 
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notation abc is unambiguous. More generally, it follows (after some argument) 
that all the various ways of associating the product of any number of elements 
are equal. Therefore, notation such as ala2 .. . an is .unambiguous. 

(2) is called the identity axiom and e is called the identity element. 
(3) is called the inverse axiom and a-I is called the inverse of a. (In 28 we 

shall see that a - I is unique.) 
It is customary to extend the product notation for elements in the following 

ways : 

an denotes the product of a with itself n times; 
a - n denotes (a-I)" and aO = e ; 
if A and B are subsets of the group G, then 

AB = {x E G I x = ab, a E A, bE B}. 

27a.. Show that the five distinct ways of associating a product of four group 
elements in a given order are all equal. 

27Jl. Let ala2 ... an be defined inductively by the rule: 

(This gives a particular association for the product of ai' a2 , . . . , an.) Prove 
that 

27"(. With the result of 27Jl prove the general associative law, that all the 
ways of associating a product of any number of elements in a given order 
are equal. (This means that expressions such as ala2 ... an are unambiguous.) 

28. Proposition. For any elements a, b, c, d of a group, it is true that 
(I) ab=e implies b=a- I ; 
(2) (C - I) - I = c; 
(3) (Cd) - l =rlc- I. 

(Note that (I) implies that inverses are unique.) 

Proof. 

(I) b = eb = (a-Ia)b = a-I(ab) = a-Ie = a-I . 
(2) Apply (I) with a = c- I and b = c. 
(3) Set a=cd and b=rlc- I. Then we have ab=(cd)(rlc- I)= 

c(dd-l)c- 1 = cc- 1 = e and by (I) it follows that r1c- 1 = b = a-I = (Cd)-I. 

28a.. Prove that for any elements ai ' a2 , . .. , an of a group, 

(a la2'" an)-I = a;; I . •. alia l i . 
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28p. Let a be an element of a group G. Show that the mapping .l..: G -+ G 
given by},. g = ag for any g EGis a one-to-one correspondence. 

281. A group G is isomorphic to a group G' if there exists a one-to-one 
correspondence ¢: G -+ G' such that ¢(ab) = (¢a)(¢b), or in other words, such 
that ¢ preserves group products. Show that such a mapping ¢ (called an 
isomorphism) also preserves identity elements and inverses. 

280. Let S be a set with an operation which assigns to each ordered pair 
(a, b) of elements of S an element alb of S in such a way that: 

(I) there is an element I E S, such that alb = 1 if and only if a = b; 
(2) for any elements a, b, c E S, (a/c)/(b/c) = a/b. 

Show that S is a group under the product defined by ab = a/(i/b). 

29. A group G is abelian if ab = ba for all a, bEG. Abelian groups are 
named for Neils Henrik Abel (1802-1829), who discovered their importance 
in his research on the theory of equations. It is often convenient to use 
additive notation for abelian groups: the group product of two elements a 
and b is written a + b; 0 denotes the identity element; - a denotes the inverse 
of a. Then the axioms of group structure read: 

(1) (a + b) + c = a + (b + c), 
(2) 0 + a = a = a + 0, 
(3) -a + a = 0 = a + (-a), 

and of course the defining property of abelian group structure, 
(4) a + b = b + a. 

290[. Which of the following sets are abelian groups under the indicated 
operations? 

(I) The set Q of rational numbers under addition; under multiplication. 
(2) The set Q* of nonzero rational numbers under addition; under multi­

plication. 
(3) The set Q+ of positive rational numbers under addition; under multi­

plication. 
(4) The set Q2X2 of 2 x 2 matrices with rational entries under addition; 

under mUltiplication. 
(5) The set Qf x 2 of 2 x 2 matrices with determinant 1 under addition; 

under multiplication. 

29p. Prove that a group with less than six elements IS abelian. Construct a 
group with six elements which is not abelian, and one which is. 

291. Prove that for n > 2 the dihedral group Dn is non-abelian. 

290. Show that a group G in which x 2 = e for every x E G, is an abelian 
group. 
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Examples of Group Structure 

30. The Symmetric Group on n Letters. Let Nn denote the set {I, 2, ... , n}. 
A permutation of n letters is a one-to-one, onto mapping from Nn to Nn. Sn 
will denote the set of all permutations of n letters. if n, p E Sn, then clearly 
the composite mapping np E Sn. The operation which assigns to each ordered 
pair (n, p) of permutations of n letters their composite, np, is a group 
product on Sn : 

(I) composition of mappings is associative as we have observed in (16); 
(2) the identity mapping (10) In: Nn --+ Nn is the identity element; 
(3) for any n E Sn, the inverse mapping (13) n -1 E Sn serves as an inverse 

element for n in the group-theoretic sense. 

The group Sn is called the symmetric group on n letters. We shall devote 
considerable space to the theory of symmetric groups at the end of this 
chapter (76--86). 

30a. Show that the group Sn has n! elements. 

30~. Show that Sn is not abelian for n > 2. 

3Oy. Construct an isomorphism of the symmetric group S3 with the dihedral 
group D 3 • (See 269.) 

31. The Circle Group. Let K denote the set of points of unit distance from 
the origin in the plane of complex numbers C. In other words 

K= {ZEC! Izl = I}. 

The set K is closed under the usual product of complex numbers: if z, WE K, 
then Izwl = Izilwi = I so that zw E K. In fact K is a group under this multi­
plication: 

(I) multiplication of complex numbers is associative; 
(2) the identity element of K is the complex number I = I + Oi; 
(3) the inverse of z E K is just liz. 

K is called the circle group since the elements of K form a circle in the 
complex plane. Note that K is abelian. 

32. The Additive Group of Integers. Addition is a group product on the set 
of integers Z. The identity element is 0 and the inverse of n is -no Of course 
Z is abelian. 



Examples of Group Structure 23 

33. The Additive Group of Integers Modulo n. Let Zn denote the set of 
equivalence or congruence classes modulo the natural number n (18). RecaII 
that we may take 

Zn = {[Oln' [Iln,···, [n - Iln}· 

A group product on Zn is given by addition of congruence classes: [aln + [b In = 

[a + b In. Of course we must verify that this addition is well defined; that 
is, we must show that [a'ln = [aln and [b'ln = [b In imply [a' + b'ln = [a + b In. 
(We leave it to the reader.) The identity element of Zn is [Oln and the inverse 
of [kln is 

- [k In = [ - k In = [n - k In . 

As the additive notation suggests, Zn is abelian . 

34. The Multiplicative Group Modulo n. We can multiply elements of the 
set Zn by setting [aln[b In = lab In. (Check that this is weII defined.) Clearly, 
for any integer k, 

[kln[lln = [kln = [Iln[kln· 

Furthermore, [Iln is the only element of Zn with this property since 
[xln[kln = [kln implies that xk == k mod n; taking k = I, we obtain 
x == 1 mod n, or what is the same thing, [xln = [I In. Consequently, [Iln is an 
identity element. 

However, this multiplication is not a group product for Zn, because some 
elements ([Oln for example) do not have an inverse. In fact [kln E Zn has an 
inverse if and only if k and n are relatively prime. We show this as foIIows. 
Suppose (k, n) = I. By 23 there are integers u and v such that uk + vn = 1. 
Thus, 

[uk + vnln = [ukln = [uln[kln = [11n' 

and [uln is an inverse for [kln. On the other hand, if 

[uln[kln = [ukln = [I]" 

for some integer u, then uk == I mod n and uk + vn = 1 for some integer v. 
This implies that (k, n) = I. It is now a routine matter to verify that 

Z~={[klnEZnl(k,n)= I} 

forms a group under multiplication of equivalence classes. Note that for a 
prime number p we have 

We shall call Z~ the multiplicative group modulo n. 
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Subgroups and eosets 

35. A subgroup of a group G is a nonempty subset H such that (I) a, bE H 
implies ab E H, and (2) a E H implies a-I E H. 

Clearly a subgroup H of a group G is a group in its own right under the 
group product inherited from G. The sets {e} and G are subgroups of a group 
G. A subgroup H of a group G is a proper subgroup when H is a proper 
subset of G. The subgroup {e} is trivial; all others are called nontrivial. 

Proposition. If His afinite subset of a group G and a, b E H implies ab E H, 
then H is a subgroup of G. 

Proof. We need only show that a E H implies a-I E H. A simple induction 
argument shows that 

{x E G I x = a"; n E N} c H 

whenever a E H. Since H is finite, it must happen that a" = d" for some 
natural numbers n > m. Since a- m E G, we have a"-m = a"a- m = ama- m = e. 
Either n = m + I and a = a"-m = e, or n > m + I and ak = a"-m = e for 
k> 1. Thus, either a: 1 = e = a, or a-I = ~-I. In either case a-I E H. 

35Cl. Show that a nonempty subset H of a group G is a subgroup of G if 
and only if a, b E H implies ab -I E H. 

35p. Let HI, H 2, .. . , H" be subgroups of a group G. Show that 
H = nz = I Hk is a subgroup of G. 

351. Let H be a subgroup of G and let a E G. Let 

H a = {x E G I axa- I E H}. 

Show that Ha is a subgroup of G. (Ha is called the conjugate of H by a.) 
Let 

N(H) = {a E G I Ha = H}. 

Show that N(H) is a subgroup of G and that H is a subgroup of N(H). 
(N(H) is called the normalizer of H.) 

350. Let ZG denote the set of elements of a group G which commute with 
all the elements of G; that is, 

ZG = {x E G I xa = ax, a E G}. 

Show that ZG is a subgroup of G. (ZG is called the center of G.) 
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35E. If S is any subset of a group G, then there is a smallest subgroup of 
G, say H, containing S. Why? In this case we say that S generates H. Show 
that S generates H if and only if every element of H can be written as a 
product s,sz ... SOl where Si E S or si' E S for each i. (When S generates H, 
we write H = <S>. ) 

35~. The dihedral group D6 (269) is the group of symmetries of a regular 
hexagon, ABCDEF. Let a E D6 denote rotation counterclockwise by 60°, and 
{3 denote reflection in the horizontal A D axis. Then D6 consists of the twelve 

C~ __ ~.B 

D --------- A 

E F 

Figure 3 

elements a i{3i where i runs through 0, 1, 2, 3, 4, 5 and j = 0, 1. Table 4 indi­
cates how each element of D6 acts on the vertices of A BCDEF. 

Table 4 

e a aZ a3 a4 as {3 a{3 aZ{3 a3 {3 a4 {3 aSp 

A B C D E F A B C D E F 

B C D E F A F A B C D E 

C D E F A B E F A B C D 

D E F A B C D E F A B C 

E F A B C D C D E F A B 

F A B C D E B C D E F A 

(1) Determine the subgroup of D6 leaving C fixed. 
(2) Determine the subgroup in which A, C, and E are permuted and show 

that it is isomorphic to D 3 • 
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(3) Determine the subgroup generated by C(4 and C(3f3. 
(4) Show how each of the elements f3C(k for k = 1,2,3,4,5 may be written 

in the form C(if3j. 

(5) Determine the center of D6 . (350.) 

35TJ. Show that the dihedral group D. is generated by two elements C( and 
f3 satisfying C(. = e, f32 = e, and f3C( = C("-1 f3. 

359. Let X, Y, and Z be subgroups of a group G. Show that Y c X implies 
X n YZ = Y(X n Z). 

36. Proposition. Every nontrivial subgroup of Z, the additive group of 
integers, has the form nZ = {x E Z I n I x} for some natural number n. 

Proof. A nontrivial subgroup H of Z contains some integer m oF O. Since 
H also contains -m, the set H n N is not empty and therefore has a least 
element 'n. It clearly follows that an E H for every a E Z, or in other words, 
nZ c H. Suppose mE H - nZ. Then m oF 0 and we may assume m > O. 
(Otherwise replace m by -m.) By the division theorem (21) m = qn + r, and 
we have 0 < r < n, since r = 0 implies m = qn E nZ. Now we have r = 
m - qn E Hand 0 < r < n, which imply that n is not the least element of 
H n N. This contradiction forces the conclusion that H - nZ = (1) or H = nZ. 

3601. Describe the subgroup nZ n mZ of Z. 

36~. Describe the subgroup of Z generated by nand m, that is, by the sub­
set {n, m}. 

36y. Describe all the subgroups of Z •. 

360. Show that Z x Z has subgroups not of the form nZ x mZ. 

37. Congruence modulo a subgroup. Let H be a subgroup of a group G, 
We use H to define an equivalence relation on G. Let 

RH = {(x, y) E G x G I x-1y E H}. 

Certainly (x, x) E Rll for all x E G, because X-IX = e E H. If (x, y) E R H , then 
X-1YEH;and consequently (X-1y)-1 EH, However, (X-1y)-1 =y-1x, and 
thus (y, x) E R H , Finally, (x, y) and(y, z) in RH imply x-1y E Hand y-Iz E H, 
which shows (x-1y)(y-I Z ) = x-1z E H, or (x, z) E R H • We have verified that 
RH is an equivalence relation (17). 

We write x == y mod H when (x, y) E R H • Clearly, x == y mod H if and 
only if y = xh for some h E H. Consequently, we denote the equivalence class 
of x E G by xH to indicate that it consists of all the elements xh where hE H. 
We call xH the left coset of x modulo H. The set of all equivalence classes 
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(left cosets) , denoted by G/H, is called the left coset space of G modulo H. 
Since left cosets are equivalence classes, two left cosets are either identical 

or disjoint. To rephrase, xH = yH when x == y mod H, and xH n yH = 0 
when x ¢ y mod H. Note that eH = H. 

An example of congruence modulo a subgroup is furnished by Z modulo 
m Z. This is just congruence modulo the integer m as defined previously (IS), 
and the quotient set Z/mZ is just Zm. The coset of the integer k is denoted by 
k + mZ to conform with the additive notation for abelian groups, or [k]m 
as before. 

37C1.. Show that all the left cosets of a group G with respect to a subgroup 
H have the same number of elements; in other words, show that any two left 
cosets are in one-to-one correspondence. 

37p. Let H be a subgroup of a group G. Define an equivalence relation on G 
which partitions G into right cosets, that is, subsets of the form 

Hy = {x E G I x = hy, h E H}. 

Prove that the number of right cosets is the same as the number of left cosets 
of G with respect to H; that is, show that the set of right cosets and the set of 
left cosets are in one-to-one correspondence. 

371. Show that when G is abelian, every right coset is a left coset modulo H. 

370. Let an equivalence relation on Sn be defined by n ~ "' if and only if 
nn = Tn. Show that this equivalence relation is congruence modulo a subgroup 
of Sn. 

3S. The order o(G) of a group G with a finite number of elements is just the 
number of elements of G. Thus, o(Zn) = n, o(Z~) = ¢(n) (see 25, 34). The order 
of the symmetric group Sn is the number of permutations of n letters (30). 
For any such permutation n: N n ..... N n there are n choices forn(l), n - I choices 
for n(2) , and so forth; in all there are n(n - I) ... (I) = n! permutations of n 
letters. In other words o(Sn) = nL 

If a group has an infinite number of elements, it has infinite order. For 
example, the circle group K (31) and the additive group of integers Z (32) 
are groups of infinite order. 

For brevity, a group of finite [infinite] order is called a finite [infinite] 
group. 

3SCI.. Let Hand K be subgroups of a group G. Show that H K is a subgroup 
of G if and only if HK = KH. Show that when HK is a finite subgroup of G, 

o(H K) = o(H)o(K)/o(H n K). 

3Sp. Determine all the subgroups of the dihedral group D6 and the order 
of each. (See 350 
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38y. Let G be a nontrivial group with no proper subgroups except the 
trivial one. Show that G is finite and that the order of G is prime. 

380. Prove that a group G of even order contains an element a =f. e such that 
a2 = e. 

39. The index [G: H] of a subgroup H of a group G is the number of left 
co sets of G modulo H, or in other words, the number of elements of the left 
coset space GjH, provided this number isfinite. Otherwise, the index is said to 
be infinite. 

For example, the left cosets of Z modulo mZ are the sets mZ + k where k 
runs through 0, 1, .. . , m - I. Thus, [Z: mZ] = m. 

Proposition. If K is a subgroup of Hand H a subgroup ofG, then [G: K] = 

[G: H][H: K], provided these indices are finite . 

Proo}: It is easy to see that each coset gH of G modulo H contains the 
cosets g(hK) = (gh)K of G modulo K, where hK runs through all the co sets 
of H modulo K. 

39cx. Let H denote the subgroup of Sn consisting of all elements n E Sn such 
that nn = n. What is [Sn: H]? 

39~. If Hand K are subgroups of finite index of a group G, show that 
H (\ K is a subgroup of finite index of G and that 

[G: H (\ K] ~ [G: H][G: K]. 

40. Lagrange's Theorem. If H is a subgroup of G, a group of finite order, 
then [G : H] = o(G)jo(H). 

Proo}: The map 1;,: H --+ yH given by f/h) = yh is a one-to-one corre­
spondence. The inverse map f y-

1 : yH --+ H is given by 1;,-l(X) = y-1x. Thus, 
the left coset yH has the same number of elements as H, namely o(H). In 
fact each left coset of G has o(H) elements. Since left cosets are identical or 
disjoint, each element of G belongs to precisely one left coset. There are 
[G: H]left cosets, and therefore, o(G) = [G: H]o(H). All three numbers are 
finite. Thus, [G: H] = o(G)jo(H). 

Lagrange's theorem is frequently stated as the order of a subgroup of a 
group of finite order divides the order of the group: Of course the equation 
[G : H] = o(G)jo(H) makes sense only when o(G) is finite (and consequently 
o(H) and [G: H] are also finite). However, even when o( G) is infinite, a sensible 
interpretation can be made: if [G : H] is finite , then o(H) is infinite; if o(H) is 
finite, then [G : H] is infinite. In other words, a subgroup of finite index in an 
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infinite group is of infinite order; a finite subgroup of an infinite group has 
infinite index. 

Joseph Louis Lagrange (1736-1813) made contributions to number theory, 
the theory of equations, and the calculus of variations as well as other fields. 
His observations on the theory of equations set the stage for the development 
of group theory. 

41. If a is an element of a group G, then the order of a, o(a), is the order of 
the subgroup 

<a) = {x E G I x = an; n E Z}, 

which is the smallest subgroup of G containing the element a. If <a) is finite, 
it happens that an = am for some integers nand m such that n > m. Then, 
an

-
m = e, and n - m > O. Let k be the smallest positive integer such that 

ak = e. Writing any given integer n uniquely in the form n = qk + r, where 
0:-;:; r < k, we have 

Thus, each an equals one of the elements aO = e, a l = a, a2
, ••• , d- ' . In 

other words, 

and the order of a is o( <a») = k. Therefore, we can state: the order of an 
element a of a group G is the smallest positive integer k such that ak = e (if such 
a k exists). If <a) is infinite, then for all positive k, d * e, and a is called an 
element of infinite order. 

If a is an element of a finite group G, then LaGrange's theorem (40) 
implies that o(a) I o(G), and it follows that a"(G) = e. In other words, the order 
of an element of a finite group divides the order of the group. We use this 
principle in the next article to prove Euler's theorem. 

41cx. Determine the order of am where a is an element of order n in a group G. 

41p. Let a and b be elements of an abelian group G. Describe o(ab) in terms 
of o(a) and o(b). 

411. Show that o(axa- I
) = o(x) for any elements a and x of a group G. 

410. For any elements a and b of a group G, show that o(ab) = o(ba). 

4h:. Let G be an abelian group. Show that for any natural number n, the 
set Gn = {x E G I o(x) I n} is a subgroup of G. 

41~. Prove there can be only two distinct groups with order 4 (up to iso­
morphism). Do the same for order 6. 
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4hl. Prove that a group with only a finite number of subgroups must be 
finite. 

42. Euler's Theorem. If a is any integer prime 10 m, then a</>(m) == 1 mod m. 

Proof. Since (a, m) = 1, the congruence class modulo m of a belongs to 
Z~" the multiplicative group modulo m (34). By (41) the order k of [a] E Z~ 
divides the order of Z;", which is just ¢(m) where ¢ is the Euler function (25). 
Then, [a]k = [I] implies that [a]</>(m) = [a</>(m)] = [1], or what is the same 
thing, a</>(m) == 1 mod m. 

Corollary. If p is a prime number, then aP -
1 == 1 mod p for any integer a 

not divisible by p. 

The corollary is known as Fermat's lillie theorem. 

43. A group G is cyclic if every element of G is a power ak (k positive, 
negative, or zero) of a fixed element a E G. The element a is said to generate 
the group G. A cyclic group is always abelian. 

A cyclic group may be finite or infinite. If G is an infinite cyclic group 
generated by a E G, then a is an element of infinite order in G and all the 
powers of a are distinct. Thus, G = { ... , a - 2, a- 1

, e, at, a2
, ••• }. The addi tive 

group of integers Z is an infinite cyclic group generated by the element 1 E Z. 
(Powers must be interpreted additively: n E Z is the n-th "power" of I.) 

If G is a cyclic group of finite order n generated by a, then G = 

{e, a, a2 , ••• , an -1} and the order of a is also n. The additive group of integers 
modulo m, Zm, is a cyclic group of order m generated by [1]m E Zm. 

Proposition. A subgroup of a cyclic group is again cyclic. 

Proof. Let G be a cyclic group, generated by a E G, with a subgroup H. 
We may assume H i= {e}: a trivial group is always cyclic. Let k be the smallest 
element of the set S = {n E N I an E H}. Then if an E H, we have kin; other­
wise n = qk + r with 0 < r < k, and cf = a"(ak

) -q E H contradicting the choice 
of k. Thus, an E H implies an = (ak)q where q = n/k. Consequently H is a 
cyclic group generated by ~. 

Proposition. A group of prime order is cyclic. 

Proof. If G has order p, where p is a prime number, then the order of any 
element a is I or p-the only divisors of p. Since the only element of order 1 
is the identity e, any element a i= e has order p and generates G. 
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430(. What is the number of elements of order d in a cyclic group of order n? 
(See 250(.) 

43p. Let G be a finite group with the property that for any two subgroups 
Hand K, either H c K or K c H. Show that G is a cyclic group whose order 
is a power of a prime. 

431. Let G and G' be cyclic groups the orders of which are relatively prime. 
Show that their direct product G x G' is cyclic. 

43b. Show that the direct product of two infinite cyclic groups is not cyclic. 

44. The n-th roots of unity. As another example of a finite cyclic group we 
take up the group of n-th roots of unity. This group will play an important 
role later in the study of Galois theory. 

A complex number Z E C is an n-th root of unity if z" = 1. It follows from 
z" = 1, that Izl" = I, Izl = 1, and z = eiO for some () E [0, 2n]. Thus, every 
n-th root of unity is an element of the circle group K (31). Substituting 
z = eiO in z" = I, we have ei"o = 1, so that n(} must be multiple of 2n, or in 
other words, () = 2nk/n for some integer k. The value of e2nik

/ " depends 
only upon the congruence class of k modulo n. Therefore, there are precisely n 
n-th roots of unity, namely the complex numbers e2nik

/ " for k = 0, 1, 2, .. . , 
n - 1. Letting ( denote e2ni

/
n

, we see that e2nik
/ " = (k, and 

is a complete set of n-th roots of unity. It is easily verified that Kn is a cyclic 
group of order n generated by (. Note that 

Now ( is not the only element of K" which generates Kn. (In general the 
generator of a cyclic group is not unique.) An element of Kn which generates 
Kn is called a primitive n-th root of unity. The following proposition identifies 
the primitive n-th roots of unity. 

Proposition. (k E Kn = {I, (, ( 2, ... , (,,-I} is a primitive n-th root of unity 
if and only if k is prime to n. 

Proof. If (k, n) = I , then 1 = uk + un for some u, u E Z and 

for all m. Thus (k generates K" . On the other hand, if (k generates Kn, we 
have ( = «(k)" so that uk == I mod n or I = uk + un for some u, u E Z and 
(k, n) = 1. 



44tt. Let C be a cyclic group with generator c. What other elements of C 
generate C? (Include the case in which C is infinite.) 

44p. Let, be a primitive n-th root of unity, and let e be a primitive m-th 
root of unity. What is the subgroup of the circle group K generated by , 
and e? 
44y. Describe the group Kn n Km. 

Conjugacy, Normal Subgroups, and Quotient Groups 

45. Let S be any subset of a group G, and let a be any element of G. The set 

sa = {x E G I axa- I E S} 

is called the conjugate of S by a. We note that (sa)b = sab and that s· = s. 

Proposition. If S is a subgroup of G, then sa is also a subgroup of G. 

Proof. Suppose x, y E sa. Then axa- t
, aya- t E S, and consequently, since 

S is a subgroup, we have 

Therefore, xy E sa. Similarly, x E sa implies axa- t E S, from which it follows 
that 

46. Normal Subgroups. A subgroup H of a group G is normal if H is equal 
to each of its conjugates, that is, if H a = H for every element a E G. Normal 
subgroups are also called invariant or self-conjugate subgroups. We write 
H <l G to indicate that H is a normal subgroup of G. 

It is easy to see and worthwhile to note that every subgroup of an abelian 
group is normal: if H is a subgroup of an abelian group G, then x E Ha if 
and only ifaxa- 1 = aa-Ix = x E H; thus, Ha = H for all a E G. 

46a. Show that a subgroup H of a group G is normal if and only if every 
left coset of H is equal to some right coset of H . 
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46~. Show that a subgroup H of a group G is normal if and only if ab E H 
implies a-I b -1 E H for any elements a, bEG. 

46y. Show that a subgroup of index 2 is always normal. 

460. Let Hand N be subgroups of a group G and let N be normal. Show 
that H n N is a normal subgroup of H. (This will be used in 69.) 

46£. Let Hand N be subgroups of a group G, N normal. Show that HN 
is a subgroup of G and that N is a normal subgroup of H N. (This will be 
used in 69.) 

46~. Let Nand N' be normal subgroups of a group G. Show that NN' is a 
normal subgroup of G. 

46TJ. Let H, K, and N be subgroups of a group G, K <l Hand N <l G. Prove 
that NK<l NH. 

469. Show that the center ZG of a group G is always a normal subgroup. 
(See 350.) 

46.. The quaternion group Q is a group of order 8 which may be presented 
as a group with two generators a and b su'bject to the relations a4 = e, b2 = a2

, 

and aba = b. To be explicit, the elements' qf Q are 

and the group product is given by Table 5. 

Table 5 

e a a2 a3 b ab a2b a3b 

e e a a2 a3 b ab a2b a3b 

a a a2 a3 e ab a2b a3b b 

a2 a2 a3 e a a2b a3b b ab 

a3 a3 e a a2 a3b b ab a2b 

b b a3b a2b ab a2 a e a3 

ab ab b a3b a2b a3 a2 a e 

a2b a2b ab b a3b e a3 a2 a 

a3b a3b a2b ab b a e a3 a2 
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(The entry in the x-row, y-column is the product xy.) 
Prove that Q is Hamiltonian, that is, that Q is a non-abelian group of which 

every subgroup is normal. 

46K. Show that a non-abelian group of order 8 with a single element of 
order 2 is isomorphic to the quaternion group Q (461). 

461... Show that the quaternion group Q is not isomorphic to the dihedral 
group D4 (269). 

46J1. Let Hand K be normal subgroups of G such that H n K = {e} . Show 
that the group HK is isomorphic to H x K, the direct product of Hand 
K (26S). 

46v. Let HI and H2 be subgroups of a group G and NI <l HI' N2<l H 2 . 
Show that 

and 

(This will be used in 70.) 

47. Theorem. If H is a normal subgroup of G, then the left coset space G/ H 
is a group with the product (aH)(bH) = (ab)H. 

Proof. Since the left cosets aH and bH are subsets of G, their product 
(aH)(bH) is the set 

{XE G Ix = a'b'; a' EaH, b' EbH}. 

This product depends only upon the cosets aH and bH and not upon the 
elements a and b. Therefore, it is well defined. Clearly, (ab)H c (aH)(bH): 
given x E (ab)H, x = abh for some h E H , and x = a'b' where a' = a E aH and 
b' = bh E bH. On the other hand, every element of (aH)(bH) has the form 
ahbh' where h, h' E H. Since H is normal and Hb = H , we have h = bh"b- I 

for some h" E H. Therefore, 

ahbh' = a(bh"b- I)bh' = (ab)(h"h') E (ab)H . 

Consequently, (aH)(bH) = (ab)H. In other words, we have shown that 
when a subgroup is normal, the product of two of its left cosets is again a left 
coset . This product is clearly associative, the left coset eH = H serves as the 
identity, and (aH) -I = a-I H . It is now apparent that G/H is a group. G/H is 
called the quotient group of G by H. 
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Corollary. If H<J G and G is finite, then o(G/H) = o(G)/o(H). 

This follows from 40 since o(G/H) = [G: H]. 

47a. Describe the quotient group Z/mZ. 

47~. Z is a normal subgroup of R (real numbers under addition). Show that 
the quotient group R/Z is isomorphic to the circle group K (31). 

471. Prove that every quotient group of a cyclic group is cyclic. 

47&. Let H<J G. Show that the order of aH as an element of the quotient 
group G/H divides the order of a E G. 

47£. Prove that if G/ZG is a cyclic group, then G is abelian. (ZG denotes the 
center of G. See 35& and 469.) 

47~. Let H<J G. Show that G/H is abelian if and only if H contains every 
element of the form aba-1b-1, where a, bEG. 

471\. Let H<J G. Let K be a subgroup of G/H and set 

K ={gEGlgHEK}. 

Show that K is a subgroup of G containing H and that K <J G if and only if 
K<J G/H. Conclude that there is a one-to-one correspondence between 
subgroups (normal subgroups) of G/H and subgroups (normal subgroups) of 
G which contain H. 

479. Let G x G' denote the direct product of the groups G and G' (26~). 
Show that H <J G and H' <J G' imply (H x H')<J (G x G') and that the 
quotient group (G x G')/(H x H') is isomorphic to the direct product 
(G/H) x (G'/H'). 

48. The normalizer of a subset S of a group G is the set 

N(S) = {a E G I sa = S}, 

where sa denotes the conjugate of S by a. (See 45.) 

Proposition. The normalizer N(S) of S in G is a subgroup of G. 

Proof. 

(I) If a, bE N(S), then 

and therefore ab E N(S). 
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(2) If a E N(S), then 

sa- 1 = (sa)"-l = saa- 1 = S, 

and therefore a-I E N(S). 

Proposition. If H is a subgroup of G, then N(H) is the largest subgroup of G 
containing H as a normal subgroup. 

Proof. Clearly H c N(H), and therefore His a subgroup of N(H). To 
see that H is a normal subgroup of N(H), we note that for a E N(H), the 
conjugate of H by a, in the group N(H), is 

{x E N(H) laxa- 1 E H} = W 11 N(H) = H 11 N(H) = H . 

Now suppose that H is normal in a subgroup N of G. In N, the conjugate 
of H by a EN is Nil Ha = H, and therefore He Ha. Similarly, He Ha-

1
, 

which implies that Ha c (Ha)"-' = H. Thus, for every a EN we have Ha = H 
and a E N(H), or in other words, we have shown that N c N(H). This is what 
is meant by saying that N(H) is the largest subgroup of G in which H is 
normal. 

48a. Using the description of the dihedral group D6 given in 35~, compute 
the normalizer of the sets {a}, {{3}, and <a) = {e, a, a2

, a3
, a4

, as}. 

48p. Determine the normalizer in the symmetric group Sn of the subgroup 
H of all permutations leaving n fixed. Determine all the conjugates of H 
in Sn. 

481. Show that N(sa) = N(S)" for any subset S of a group G. 

49. Theorem. The number of distinct subsets of a group G which are con­
jugates of a given subset S is [G: N(S)], the index in G of the normalizer 
ofS. 

Proof. sa = Sb if and only if sab - ' = S. In other words, sa = Sb if and 
only if ab -I, E N(S), which is equivalent to a-I == b - 1 mod N(S). This sets up 
a one-to.-one correspondence from the class 'ib'(S) of subsets of G conjugate 
to S, to the left coset space Gj N(S) given by sa -+ a- J N(S). Since GjN(S) has 
[G: N(S)] elements, the theorem follows. 

49a. Let S be a subset of a group G, which has exactly two conjugates. Show 
that G has a proper nontrivial normal subgroup. 

49p. Let H be a proper subgroup of a finite group G. Show there is at least 
one element of G not contained in H or in any of its conjugates. 
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SO. The center of a group G is the set 

ZG = {x E G I xa = ax, for all a E G}. 

Proposition. The center of a group is a normal subgroup. 

Proof. If x, y E ZG' then for any a E G we have xya = xay = axy, so that 
xy E ZG' If x E ZG' then for any a E G, xa- 1 = a-lx, which implies that 

so that x- 1 E ZG' Thus, ZG is a subgroup of G. For any a E G we have 
x E Zo if and only ifaxa- 1 = xaa- 1 = x E ZG' Therefore, Zo = ZG for all 
a E G, and ZG is a normal subgroup of G. 

Proposition. For any group G, ZG = {x E G I N(x) = G}. 

Proof. N(x) denotes the normalizer of the set {x}. If N(x) = G, then 
{x}a = {x} for each a E G, or what is the same thing, axa- 1 = x and ax = xa 
for all a E G, which means x E ZG' Reversing all these implications shows 
that N(x) = G implies x E ZG' 

5001. Show that the center of the symmetric group Sn is trivial for n > 2. 

SOp. Compute the center of the dihedral group Dn. (See 269 and 3511.) 

SOy. Compute the center of the quaternion group Q (461). 

51. The Conjugacy Class Equation of a Group. Anelementxof agroupG is 
conjugate to an element y of G if x = aya- 1 for some element a of G-or 
what is the same thing, if the set {y} is a conjugate of the set {x} as defined in 
45. It is not difficult to verify that conjugacy is an equivalence relation and 
divides G into disjoint conjugacy classes. The number of elements in ex, the 
conjugacy class of x, is [G: N(x)], the index in G of N(x), the normalizer of 
{x}. (This follows from 49, since the number of elements in ex is the number 
of conjugates of the set {x}.) Clearly, x E ZG' the center of G, if and only if 
N(x) = G, [G: N(x)] = 1, and ex = {x}. 

Supp'Ose now that G is a finite group, and that consequently there are a 
finite number of conjugacy classes. By the above rema(ks it is clear that either 
x E ZG or ex c G - ZG' Let Xl' X2, •.. , Xm E G be elements obtained by 
choosing one element from each conjugacy class contained in G - Za' For 
any x E G, either x E ZG or x is conjugate to one Xi' Counting up the elements 
of G, we conclude that 
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m 

o(G) = o(ZG) + I [G : N(Xj)]. 
i = 1 

This is called the conjugacy class equation of G. 

51cx. Divide the elements of the quaternion group Q into conjugacy classes 
and verify the conjugacy class equation. 

51~. Prove that a group of order p2 is abelian (p a prime). 

52. Prime Power Groups. We illustrate the results of the last few articles 
with a brief study of groups whose order is a power of a prime number. Let 
G be a group of order pO, where p is a prime number and n > 1. 

Lemma 1. G has a nontrivial center. 

Proof. In the conjugacy class equation of G 

In 

o(G) = o(Zo) + I [G : N(x;)), 
i = 1 

we must have [G: N(Xj)] > 1 so that pi [G: N(x j)] for each i = 1, 2, . .. , m. 
Since pi o(G), it follows that pi o(ZG) and therefore ZG =I {e}. 

Lemma 2. G has a proper nontrivial normal subgroup. 

Proof. ZG ' the center of G, is a normal subgroup of G and is nontrivial 
by lemma 1. If ZG is proper, we are finished. If ZG = G, then G is abelian and 
any element a E G, a =I e, generates a nontrivial normal subgroup ( a ) . If 
o(a) = o( ( a» < o(G), then we are finished. On the other hand, o(a) = o(G) = p" 
implies o(aP) = p" -I, and aP generates a proper nontrivial normal subgroup. 

Theorem. If G is a group of order pO, where p is a prime number and n ~ I, 
then G has a sequence of subgroups {e} = Go c G1 C .. . c G" = G such that 
o( Gk) ,,; p\ Gk is normal in Gk+ I , and the quotient group Gk+ d Gk is cyclic 
of order p. 

Proof. The proof is by induction on the integer n. For n = I it is trivial 
because {e} = Go c G1 = G, and a group of order p , p prime, is cyclic (43) . 
Suppose the theorem is true for all groups of order l for k < n, and let G 
be a group of order pO . By lemma 2, G has a proper nontrivial normal sub­
group. Among all such subgroups, finite in number, let H be one of maximal 
order, say o(H) = pt, t < n. We want to show t = n - 1. 
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Suppose t < n - I; then G/H is a group of order pn-t ~ p2. By lemma 2, 
G/H has a proper, nontrivial, normal subgroup N. Let H' denote the subset 
{g E G I gH E N} of G. H' is a normal subgroup of G: 

(1) If g, g' E H', then gH, g'H E N, and since N is a subgroup of G/H, 
(gH)(g'H) = gg'H E Nand gg' E H'. 

(2) If 9 E H, then gH EN, and since N is a subgroup, (gH)-1 = g-1 HEN 
so that g-1 E H'. 

(3) (H')" = {g E G I aga- 1 E H'} = {g E G I aga- 1 HEN} 

= {g E G I (aH)(gH)(aH) -1 E N} 

= {gE G IgH E N"H} 

= {gE G IgH EN} 

=H'. 

Clearly, H'/H = N and therefore 

o(H')/o(H) = [H': H] = o(N) ~ p, 

or in other words, o(H') ~ po(H) contradicting maximality of H. Conse­
quently, the assumption that t < n - I is incorrect, and t = n - 1. 

To finish the proof we set Gn - 1 = H and apply the inductive assumption 
to the group Gn- 1 of order pn-l to obtain the groups Go c G1 C ••• c Gn- 1. 
Since G/H = Gn/Gn- 1 is a group of order p and p is prime, it is automatically 
cyclic (43). 

The sequence 

{e} = Go c G1 C ••• c Gn - 1 c Gn = G 

is called a composition series for G. (See 73.) 

The Sylow Theorems 

Some information about the structure of a finite group can be obtained from 
its order alone. The most important results in this direction are the three 
theorems of Sylow which are proved in the next few articles. First we give a 
basic theorem on transformation groups which will simplify the proofs. 
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53. Transformation Groups. A group G acts on a set X (as a group of 
transformations) if to each pair (g, x) E G x X there is associated an element 
9 * x E X in such a way that 

(I) 9 * (h * x) = (gh) * x for all g, h E G and all x EX; 
(2) e * x = x for all x E X. (e is the identity element of G.) 

We note that each 9 E G determines a one-to-one correspondence 
g: X -+ X, given by g(x) = 9 * x, whose inverse is g-l: X -+ X. (These one­
to-one correspondences are sometimes called transformations of X.) 

As examples of transformation groups we note that every group G acts 
on itself by the rule 9 * h = gh for all g, hE G, and more generally, if H is a 
subgroup of G, then G acts on the left coset space X = G/H by the rule 
9 * (g'H) = (gg')H. 

53a. Explain how the symmetric group So acts as a group of transformations 
on any set X with n elements. 

53p. Let G be a group of transformations of a set X. Define Go by 

Go = {g E Gig * x = x, all x EX}. 

Show that Go is a normal subgroup of G. 

531. A group of transformations G ofa set X acts effectively on X if 9 * x = x 
for all x E X implies 9 = e. In other words, G is an effective transformation 
group of X whenever Go = {e}. (See 53p.) Show that if G is any transforma­
tion group of X, effective or not, the quotient group G/Go acts effectively 
on X. 

530. Show that a group G acts effectively on the left coset space G/H if 
and only if n. e G W = {e}. 

53£. Show that the set SiI(X) of one-to-one correspondences of a set X 
forms the largest effective transformation group of X. 

54. Orbits and Stabilizers. Let G be a group acting on the set X. We define 
an equivalence relation - on X by setting x - y if and only if y = 9 * x for 
some g E G. An equivalence class under - is called an orbit. The orbit of 
x E X is simply the set 

G * x = {y E X I y = 9 * x, for some 9 E G} . 

The quotient set X/ - is called the set of orbits of X under the action ofG. For 
each x E X, the set 

G;x; = {g E Gig * x = x} 

is a subgroup of G called the stabilizer of x. 
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Theorem. IfG is a group acting on afinite set X , then the number of elements 
in the orbit of x E X is the index in G of the stabilizer Gx . 

Proof. The mapping cf>: G ---> G * x given by cf>(g) = 9 * x is clearly onto. 
Furthermore, cf>(g) = cf>(h) if and only if g-I hE G" or what is the same thing, 
9 == h mod G,. This implies there is a well-defined, one-to-one correspondence 
G/Gx ---> G * x given by gG xl----> 9 * x. It follows that G * x has the same 
number of elements as G/Gx , namely [G: GJ. 

One illustration of this theorem is as follows. Let 2 G denote the power set 
of a finite group G, that is, the set whose elements are the subsets of G. 
(It is not hard to see that 2G has 2o

(G) elements.) Let G act on 2G by the rule 

Then the orbit of a set S eGis just 0'(S), the collection of conjugates of S, 
and the stabilizer of S is just its normalizer N(S). Thus, the theorem above 
implies 49 as a special case-the number of conjugates of S is [G: N(S)]. 

54a. Let H be a subgroup of a group G. Then H acts on G by the rule 
h * x = hx for hE H, x E G. What is the orbit of x E G under this action? 
What is the stabilizer H x? 

54p. Let G be a group acting on a set X. Show that two elements of X 
which belong to the same orbit have conjugate subgroups of G as stabilizers. 

54"(. Let Hand K be subgroups of a group G. K acts on the left coset space 
G/H by k * (gH) = (kg)H. What is the stabilizer of gH? What is the number 
of elements in the orbit of gH? 

55. Cauchy's Theorem. If p is a prime dividing the order of a finite group 
G, then G has an element of order p. 

Proof. Let n be the order of G. Let 

(GP denotes the cartesian product G x G x ... x G with p factors.) Since the 
first p - I coordinates of an element of X may be chosen arbitrarily from G, 
thereby determining the last one, it is clear that X has nP -

1 elements. 
Let C be a cyclic group of order p generated by the element c. Let C act 

on the set X by the rule 
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By 54 the number of elements in any orbit divides the order of C, which is p. 
Thus, an orbit has either p elements or one element. Let r be the number of 
orbits with one element, and let s be the number of orbits with p elements. 
Then r + sp = nP -

I
, the number of elements of X. 

By hypothesis pin, and consequently, r + sp = nP -
1 implies that p I r. We 

know that r #- 0 because the orbit of (e, e, ... , e) E X has only one element. 
Therefore, there are at least p orbits with a single element. Each such element 
has the form (a, a, ... , a) E X so that aP = e. Thus, G contains at least p 
elements solving the equation x P = e. Clearly then, G contains an element 
a#- e such that aP = e, and a must have order p. 

Remarks. This beautiful proof of Cauchy's theorem is due to James H. 
McKay ("Another proof of Cauchy's group theorem ," American Mathematical 
Monthly , vol. 66 (1959), p. 119). 

Augustin Louis, Baron Cauchy (1789-1857) was a French mathematician 
whose prodigious contributions are important to all branches of mathematics. 
Among his contributions to algebra, in addition to the theorem above, is a 
theorem concerning the number of distinct values assumed by a function of 
several variables when the variables are permuted. This theorem lies at the 
crux of Abel's argument that algebraic equations of the fifth degree are not 
generally solvable by radicals. (See 85cx and 149.) Cauchy is perhaps the one 
mathematician entitled to be called the founder of group theory. 

56. First Sylow Theorem. If p is prime and p" divides the order of a finite 
group G, then G has a subgroup of order p". 

Proof Suppose o(G) = p"m. The number of subsets of G which have 
precisely p" elements is the binomial coefficient 

N = (p"m) = (p"m)(p"m - I) ... (p"m - i) ... (p"m - p" + I). 
p" (p")(p" - I) ... (p" - i) . . . (I) 

(This is the number of ways that a set of p" elements can be chosen from a 
set of p"m elements.) For 0 < i < p" the highest power of p dividing p"m - i 
is the same as that dividing p" - i. (Why?) Thus, all the factors of p in the 
numerator and the denominator of N cancel out, except those of m. Conse­
quently, m and N have the same number of factors of p. Let p' be the highest 
power of p dividing m and N. 

G acts on the set !/ of all subsets of G with p" elements by the rule 

g * S = gS = {x E G I x = gs; S E S} 

for any S E Y. If every orbit under this action were divisible by p'+ I, we 
would have p,+1 I N. (Why?) Therefore, there is at least one orbit, say 
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{SI, S2, . . . , Sk} ' for which pr+l %k. Let R denote the stabilizer of Sl ' We 
know that k = [G: H] = o(G)/o(H) by 54. Since pr I m, we have p,, +r Ip"m. 
However, p"m = o(G) = koCH), and therefore, we have p,,+r I koCH). Since 
pr + 1 % k, we must conclude that p" I o(H) and that p" :::; o(H). 

On the other hand, because H stabilizes SI we have Hg c SI for any 
9 E SI ' Thus, 

o(H) = * (Hg) :::; * (St) = p". 

Combined with p" :::; o(H), this implies o(H) = p" and the proof is complete. 

Remarks. This elegant argument, which is a great improvement over the 
older method of double cosets, comes from a paper of Helmut Wielandt, 
" Ein Beweis fUr die Existenz der Sylowgruppen," Archiv der Matematik, 
vol. 10 (1959) pp. 401-402. The original theorem of the Norwegian mathe­
matician Ludwig Sylow (1832- 1918) stated only the existence of a subgroup 
of order p" where p" is the highest power of p dividing the order of the group. 
Such a subgroup is called a p-Sylow subgroup. Of course the more general 
statement above is easily deduced from Sylow's theorem and the structure of 
prime power groups (52). Finally, we observe that Cauchy's theorem. (55) 
is a special case of the first Sylow theorem, since the existence of a subgroup 
of order p implies the existence of an element of order p. 

57. Second Sylow Theorem. All the p-Sylow subgroups of a finite group 
are conjugate. 

Proof. Let G be a finite group of order p"m, where p % m and n > O. Let 
H be a p-Sylow subgroup of G. Of course o(H) = p" and [G: H] = m . Let 
Sl ' S2, ... , Sm denote the left cosets of G mod H. G acts on G/H by the rule 
9 * Si = gSi' Let Hi denote the stabilizer of Si' 

All the groups Hi are conjugates of H. To see this we note that by 54, 
O(Ri) = p", whilegHg- 1 c Hi if Si = gH. Since O(gHg - l) = o(H) = o(H;), we 
havegHg-l=Hi . 

Let H ' be a second p-Sylow subgroup of G. Then H' also acts on G/H 
by the same rule as G. Since p % m, there is at least one orbit (under H') with 
a number of elements not divisible by p. We may suppose that SI' S2, ... , Sr 
are the elements of an orbit where p % r. Let K = H' n H I ' Then K is the 
stabilizer of SI under the action of H'. Therefore, [H': K] = r. However, 
o(H') = p" and p % r, from which it follows that r = 1 and K = H '. Therefore, 
o(K) = o(H') = o(HI) = p" , and H' = K = HI ' Thus, H' and H are conjugate. 

58. Third Sylow Theorem. The number of p-Sylow subgroups of a finite 
group is a divisor of their common index and is congruent to 1 modulo p. 
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Proof. Let G be a group of order p"m, where n > 0 and p,r m. Suppose r 
is the number of p-Sylow subgroups of G. Then we want to show that rim 
and that r = I mod p. 

As before, let H be anyone of the p-Sylow subgroups of G. Of course 
o(H) = p" and [G: H] = m. We shall denote the elements of the left coset 
space G/H by 5 1,52, ... ,5",. G acts on G/ H by the rule g*5=g5 for 
5 E G/ H. There is only one orbit under this action, namely the whole of 
G / H. (Why?) Therefore the stabilizer of each 5 j is a subgroup in G of index 
m and order p". In other words, each coset 5 j has a p-Sylow subgroup as 
stabilizer. 

On the other hand, as we shall soon see, each p-Sylow subgroup is the 
stabilizer of one or more of the cosets 51, 52' ... , 5 m' Clearly, H is the 
stabilizer of the coset H, which must occur among the 5;'s. Let 51, 52' ... , 5k 

be the elements of G/ H whose stabilizer is H. By the second Sylow theorem 
any other p-Sylow subgroup of G is a conjugate gHg- 1 of H. It is easy to see 
that gHg- 1 stabilizes the cosets g5 1,g5z , ... ,g5k • Consequently, we see 
that each one of the r distinct p-Sylow subgroups of G is the stabilizer of 
exactly k elements of G/H. Hence, we conclude that 111 = kr and that r 1111. 

Now we restrict our attention to just the action of H on G/H. Unless 
H = G and r = I, there is more than one orbit. (Why?) Applying the orbits 
and stabilizers theorem.of 54 to this restricted action and using the fact that 
o(H) = p", we can distinguish two cases: 

(I) the orbit of 5 j contains pI elements for some I, 0 < t < n; 
(2) the orbit of 5 j contains only the element 5 j • 

Clearly, the second case occurs if and only if 5 j is one of the cosets 51' 52' ... , 
5k whose stabilizer is H. Thus, counting the elements of G/H, we conclude 
that m = k + up or that m = k mod p. 

The previous conclusion that m = kr along with m = k modp yields 
kr = k mod p, from which it follows that r = I mod p, since k ¥= 0 mod p. 
The proof is accomplished. 

59. As a simple example of the direct application of the Sylow theorems, we 
note that a group of order 100 has a normal subgroup of order 25. The first 
theorem guarantees a 5-Sylow subgroup of order 25. The number of such 
subgroups is congruent to I modulo 5 and divides 4 by the third theorem. 
Thus, there is only one such subgroup of order 25. Since this subgroup equals 
each of its conjugates, it must be normal. 

590(. Let G be a group of order pq, where p and q are prime and p < q. Show 
that G is cyclic when q ¥= 1 mod p. What can be said of G when q = I mod p? 

59p. Show that a group of order 2p, where p is prime, is either cyclic or 
isomorphic to the dihedral group Dp. 
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59y. Suppose that G is a finite group with a normal subgroup H of order 
pk , where p is prime and k > O. Show that H is contained in every p-Sylow 
subgroup of G. 

590. Let H be a normal subgroup of finite index in a group G. Show that if 
II [G : H], where p is prime, then G contains a subgroup K such that 
[K:H]=l. 

59£. A group is simple if it has only itself and the trivial group as normal 
subgroups. (For example, groups of prime order are obviously simple.) Prove 
that a group of order 30 cannot be simple. 

591;. Show that a group of order p2q, where p and q are primes, is not 
simple (59£). 

5911. Show that a simple group of order less than 60 is of prime order. (We 
shall see later that there does exist a simple group of order 60, the alternating 
group As.) 

599. Let G be a finite group with just one p-Sylow subgroup for each prime 
p dividing o(G). Show that G is isomorphic to the direct product of all its 
Sylow subgroups. (See 261; and 26v.) 

591. Let p be a prime such that l divides the order of the finite group G. 
Prove that the number of subgroups of order pk in G is congruent to I modulo p. 
(This is a theorem of Georg Frobenius (1849-1917), and it is only fair to 
warn that the solution is somewhat lengthy.) 

Group Homomorphism 
and Isomorphism 

60. A homomorphism of groups is a mapping from the set of elements of 
one group to the set of elements of another which preserves multiplication. In 
other words, a mapping 4> : G -+ G' is a group homomorphism if G and G' are 
groups and if for all x, Y E G, 4>(xy) = (4)x)(4>y). 

A group homomorphism 4>: G -+ G is called an endomorphism (of the 
group G). The identity mapping I G: G -+ G of any group G is clearly an 
endomorphism. 

The composition of homomorphisms is again a homomorphism. Indeed, if 
4> : G -+ G' and I/J: G' -+ G" are group homomorphisms, then for all x, y E G 
we have 
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(1jI1/»(xy) = ifJ(l/>(xy)) = 1jI«l/>x)(l/>y)) = 1jI(l/>x)IjI(l/>y) = «ifJl/»x)«IjII/»y), 

and therefore 1jI1/>: G -+ G" is a homomorphism. 

601X. Show that a group homomorphism preserves identity elements and 
inverses. That is, show that I/>e = e' and that l/>(g-l) = (l/>g)-l for any homo­
morphism 1/>: G -+ G' of groups with identity elements e and e'. 

6Op. Let H be a normal subgroup of a group G. Show that the mapping 
1/>: G -+ G/H given by I/>g = gH is a group homomorphism. 

60"(. Show that a group G is abelian if and only if the mapping 1/>: G -+ G 
given by I/>g = g-l is an endomorphism of G. 

60&. Show that a group G is abelian if and only if the mapping 1/>: G -+ G 
given by I/>g = g2 is an endomorphism of G. 

60£. Show that a group G is abelian if and only if the mapping 1/>: G x G -+ G 
given by I/>(a, b) = ab is a group homomorphism. 

60~. Determine the number of distinct homomorphisms 1/>: Zm -+ Zn in 
terms of m and n. 

61. Proposition. A mapping 1/>: Z -+ Z is an endomorphism of the additive 
group of integers if and only if there is an integer k such that I/>(n) = kn 
for all n E Z. 

Proof. Let k E Z and I/>(n) = kn for all n E Z. Then for all n, m E Z we 
have 

I/>(n + m) = ken + m) = kn + km = I/>(n) + I/>(m), 

so that I/> is a group homomorphism from Z to Z. Suppose on the other hand 
that 1/>: Z -+ Z is an endomorphism. Let k = 1/>(1). Since n = I + ... (n)'" + 1 
for a positive integer n, we have 

I/>(n) = 1/>(1) + ... (n) ... + 1/>(1) = k + ... (n) ... + k = kn. 

Also, 

1/>(1) = 1/>(1 + 0) = 1/>(1) + 1/>(0) 

implies 1/>(0) = 0 = k . 0, from which it follows that 

I/>(-I)=-k and I/>(-n)=-kn 

for any positive n. Thus, for all n E Z we have I/>(n) = kn. 
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62. An isomorphism ¢: G -+ G' is a one-to-one correspondence which pre­
serves group multiplication. An isomorphism is therefore a very special kind 
of homomorphism. If ¢: G -+ G' is an isomorphism, it is easy to show (as 
the reader should) that the inverse mapping ¢ -I: G' -+ G preserves multipli­
cation and is again an isomorphism. 

A group G is isomorphic to a group G' if there exists an isomorphism 
¢: G -+ G'. This is denoted by writing G R; G' or ¢: G R; G'. Isomorphism is 
an equivalence relation among groups: 

(I) G;::;; G for any group G; 
(2) G;::;; G' implies G' ;::;; G; and 
(3) G;::;; G', G';::;; G" imply G;::;; GU

• 

Isomorphic groups have the same structure and the same group-theoretic 
properties. In a sense, group theory is the study of those properties of groups 
which are preserved under isomorphism. 

620:. Let R denote the group of all real numbers under addition and let 
R + denote the group of all positive real numbers under multiplication . Show 
that the mapping ¢: R -+ R + given by ¢x = eX is an isomorphism. What is 
the inverse of ¢? 

62p. Let ¢:ZI6-+Z'17 be given by ¢[kJI6=[3kJI7' Show that ¢ is an 
isomorphism. (See 33 and 34.) 

62.,. Show that a group of order 8 is isomorphic to Zs (33), D4 (269), 
Q (461), Z4 X Z2' or Z2 x Z2 X Z2 ' 

620. Show that a group of order p2, where p is prime, is isomorphic to Zp2 
or Zp x Zp. 

62£. Let G denote the group of real numbers between - I and + I under 
the operation x' y = (x + y)/( I + xy). Show that G is isomorphic to the 
group of real numbers R under addition. 

62~. Show that every finite abelian group is isomorphic to a direct product 
of cyclic groups. 

63. Proposition. A group G of order n is cyclic if and only if G ;::;; Zn. 

Proof IfG is acyclic group of order n (43), then G = {e = aO, a l
, . .. , an-I}. 

Recall that Zn' the additive group of integers modulo n, may be represented 
as the set {[OJn , [Iln ' ... , [n - Iln} (33). An isomorphism ¢: G -+ Zn is given 
by ¢(d) = [kJn' since ¢ is clearly a one-to-one correspondence and 
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(This isomorphism is not unique-it depends on the choice of a generator 
for G.) 

On the other hand, suppose G is a group and ¢: Zn -+ G an isomorphism. 
Let a = ¢[Iln. If g E G, then g = ¢[kln for some [kln E Zn, and therefore 

g = ¢[kln = ¢([Il" + ... (k)'" + [Iln) = (¢[Ilnt = ak
• 

This shows that every element of G is a power of a and hence that G is cyclic. 

64. An automorphism of a group is an isomorphism of the group with itself. 
The identity I G: G -+ G of a group is an automorphism of G, and in general 
there are many others. 

Let a be an element of a group G, and let IXa: G -+ G be the mapping given 
by IXa(g) = a-1ga for every 9 E G. Then IXa is a homomorphism since 

To prove that IXa is an isomorphism, and hence an automorphism, it is 
sufficient to observe that IXa-l is an inverse for IXa' Thus, to each element 
a E G there is assigned an automorphism IXa' Such automorphisms are called 
inner automorphisms. All other automorphisms (if there are any) are called 
outer automorphisms. 

If S is a subset of a group G and a E G, then the conjugate of S by a is the 
set 

sa = {XE G laxa- 1 E S} 

(45). It follows that sa = IXa(S), since x E sa means axa- 1 = YES, or 
x = a-Iya E IXa(S) and vice versa. The point is that we may use this to give a 
variation of the definition of normal subgroup: a subgroup H of a group G is 
normal if IXoCH) = H for all a E G. (This is the source of the term invariant 
subgroup for normal subgroups.) 

64a. Show that the set d(G) of all automorphisms of a group G is a group 
under composition and that the set f(G) of inner automorphisms of a group 
G is a normal subgroup of d(G). (The quotient group d(G)jf(G) is called the 
group of outer automorphisms of G, which is a misnomer because the elements 
of d(G)jf(G) are not outer automorphisms nor do the outer automorphisms 
themselves form a group.) 

641t Show that the quotient of a group by its c!:nter is isomorphic to its 
group of inner automorphisms, that is, GjZG ~ f(G). 

64y. Show that for any finite group G, o(G) > 2 implies o(s;f/(G» > 1. 

640. Determine the number of distinct automorphisms of the groups Zn 
and Dn. 
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64.:. A subgroup H of a group G is characteristic if 4>(H) = H for all 
4> E d(G). Show that K a characteristic subgroup of Hand H a charac­
teristic subgroup of G imply that K is a characteristic subgroup of G. Show 
that K characteristic in Hand H normal in G imply K normal in G. 

64~. Determine the group d(Z2 x Z2)' 

65. If 4>: G --+ G' is a group homomorphism, then the kernel of 4> is the set 

Ker 4> = {x E G l4>x = e' E G'}, 

where e' is the identity element of G'. In other words the kernel of 4> is the set 
of elements of G which are mapped into the identity element e' of G'. Since 
x = xe for any x E G, we have 4>x = (4)x)(4>e), which implies 4>e = e'. (Why?) 
Therefore, e E Ker 4> and Ker 4> is not empty. 

Proposition. For any homomorphism of groups 4>: G --+ G', Ker 4> is a normal 
subgroup of G. 

Proof. First, we note that for all x E G, 

4>(x- l ) = 4>(X)-1 

because XX-I = e implies 

(4)(x))(4>(x- I
)) = 4>(e) = e'. 

From this it follows that if x E Ker 4>, then 

4>(x- l ) = (4)(X))-1 = e'-I = e', 

so that X-I E Ker 4>. If x, y E Ker 4>, then 

4>(xy) = (4)x)(4>y) = e'e' = e', 

so that xy E Ker 4>. Thus, Ker 4> is a subgroup of G. 
Let x E (Ker 4»", the conjugate of Ker 4> by a E G. Then, axa- I E Ker 4> 

and (4)a)(4>x)(4>a- l
) = e' which implies 4>x = e' and x E Ker 4>, or in other 

words, (Ker 4>)" c Ker 4>. On the other hand, if x E Ker 4>, then axa- I E Ker 4> 
and x E (Ker 4>)", or Ker 4> c (Ker 4>)". Thus, Ker 4> is normal. 

Proposition. A homomorphism 4>: G --+ G' is one to one if and only if 
Ker 4> = {e}. 

Proof. If 4> is one to one, then Ker 4> = 4>-I{e'} can contain but one 
element of G, and since 4>(e) = e', it must be that Ker 4> = {e}. Conversely, if 
Ker 4> = {e} and 4>(a) = 4>(b) for a, bEG, then 

4>(ab- l
) = 4>(a)4>(b)-1 = e', 
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so that ab - I E Ker ¢, ab -1 = e, and a = b. This shows that ¢ is one to one. 
(Why?) 

A homomorphism which is one to one is called a monomorphism. 

66. The image (11) of a homomorphism ¢: G --+ G' is the set 

1m ¢ = {x E G' I x = ¢(y), y E G}. 

Proposition. For any homomorphism of groups ¢: G --+ G', 1m ¢ is a subgroup 
ofG'. 

The proof is a simple exercise for the reader. 

Proposition. fr ¢: G --+ G' is a group homomorphism, then 

G/Ker ¢ ~ 1m ¢. 

Proof. We recall that the quotient group G/Ker ¢ is the set of left cosets 
a(Ker ¢) with the product a(Ker ¢)b(Ker ¢) = (ab)(Ker ¢). (See 47.) Let 
f3: G/Ker ¢ --+ 1m ¢ be the mapping given by f3(a(Ker ¢)) = ¢(a). We must 
first check that f3 is well defined: a given element a(Ker ¢) of G/Ker ¢ may be 
written in many ways, but the definition of f3 is given in terms of a specific 
expression. Suppose that a(Ker ¢) = b(Ker ¢). Then bE a(Ker ¢) and 
b = ac, where c E Ker ¢. It then follows that 

¢(b) = ¢(ac) = ¢(a)¢(c) = ¢(a)e' = ¢(a). 

Thus, the value of f3 on a coset does not depend on the specific representation 
of the coset-it is the same for all representations. 

It is clear from the definition of f3 that it is a homomorphism, and it only 
remains to see that f3 is a one-to-one correspondence. If x Elm ¢, then 
x = ¢(y) for some y E G, and x = f3(y(Ker ¢)). Therefore, f3 is onto. On the 
other hand, it is immediate from the formula for f3 that Ker f3 is the set with 
the single element, Ker ¢ (considered as the coset of e). Therefore, f3 is one 
to one. 

67. A homomorphism ¢: G --+ G' is onto if and only if 1m ¢ = G' (11). A 
homomorphism which is onto is called an epimorphism. 

Proposition. Every group homomorphism ¢: G --+ G' can be factored in the 
form ¢ = af3y, where 
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(1) 0:: 1m rp --+ G' is a monomorphism, 
(2) f3: G/Ker rp --+ 1m rp is an isomorphism, 
(3) y: G --+ G/Ker rp is an epimorphism. 

Proof. The mapping 0: is simply the inclusion of the subset 1m rp into G': 
it assigns to the element x E 1m rp, the same element x E G'; 0: is clearly one to 
one, a monomorphism. The mapping f3 is the isomorphism discussed in 66. 
The mapping y is given by yea) = a(Ker rp)-that is, y assigns to the element 
a E G, the coset a(Ker rp), which belongs to G/Ker rp. Since every coset of 
Ker rp is the coset of each of its elements, the mapping y is onto. It is clear that 
y is a homomorphism: 

y(ab) = (ab)(Ker rp) = (a(Ker rp))(b(Ker rp)) = (ya)(yb). 

Thus, y is an epimorphism. 

We can summarize the content of this proposition in Figure 4. 

c------... ·c' 

a 

G / Ker cf>---'-'---------... 1m cf> 
(3 

Figure 4 

67a.. Let R denote the group of real numbers under addition and C* the 
group of nonzero complex numbers under multiplication. Decompose the 
homomorphism rp: R --+ C* given by rpx = eZ

•
ix in the manner of the proposi­

tion above. 

67p. For any group G let rp: G --+ d(G) be given by rpg = O:g - I (64). Decom­
pose rp in the manner of the proposition above. 

67y. Let rp: Z -+ Zm be the homomorphism given by rp(k) = [nkl m. Decom­
pose rp as above. 

670. Decompose the endomorphism rp: K --+ K of the circle group K given 
by rpz = z". 
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68. The First Isomorphism Theorem. If Hand N are normal subgroups of a 
group G, and N c H, then HjN is a normal subgroup of GjN and there is 
an isomorphism 

(G/N)j(HjN) ~ GjH. 

Proof. We define a mapping 1>: GjN -+ GjH by 1>(aN) = aH. Clearly 1> is 
well defined; furthermore 1> is a homomorphism, since 

1>(aNbN) = 1>(abN) = abH = (aH)(bH) = 1>(aN)1>(bN). 

Now 

Ker 1> = {aN E GjN I 1> (aN) = H} = {aN E GjN I a E H} = H/N. 

Therefore by 65, HjN is a normal subgroup of GjN. Furthermore, 1> is onto 
(why?), and by 66, 

(GjN)j(HjN) = (GjN)jKer 1> ~ 1m 1> = GjH. 

69. The Second Isomorphism Theorem. If Hand N are subgroups of a group 
G, and N is normal in G, then there is an isomorphism of groups, 

HNjN ~Hj(H (\ N). 

Proof. Tacit in the statement of this theorem are the statements: 
(I) H (\ N is a normal subgroup of H; (2) H N is a subgroup of G; and 
(3) N is a normal subgroup of H N. We leave the proofs of these statements to 
the reader. (46&-46E.) 

We define a mapping 1>: HNjN -+ Hj(H (\ N) by 

1>(hN) = h(H (\ N). 

(Note that hnN = hN-that is, for any element hn E HN, the coset modulo 
N of hn is the same as that of h.) We must verify that 

(I) 1> is well defined: suppose hN = h'N; then h' = hn for n EN, and 
n = h- 1h' E H (\ N; and consequently, h(H (\ N) = h'(H (\ N). 

(2) 1> is onto: for any h(H (\ N) E Hj(H (\ N), we have h(H (\ N) = 1>(hN). 
(3) 1> is one to one: Ker 1> is the set of cosets hN E H N j N for which 

h(H (\ N) = H (\ N, which occurs only when hE H (\ N c Nand 
hN=N. 

Remark. Since HN = NH, we also have NHjN ~ Hj(H (\ N). 
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70. The Third Isomorphism Theorem. (Zassenhaus.) If HI and H2 are 
subgroups of a group G and if N 1 and N 2 are normal subgroups of HI and 
H 2 , respectively, then there are isomorphisms 

Proof. Because of symmetry, only the first isomorphism need be proved. 
We leave it to the reader to verify that the requisite subgroups are normal. 
(See exercise 46v.) Setting H = HI n H2 and N = NI(HI n N 2), we apply 69 
to obtain isomorphisms 

NI(HI n N 2)(H I n H 2) NH H HI n H2 

NI(H I n N 2) = N ~ H n N = HI n H2 n NI(HI n N 2) 

Exercise 359 states that if X, Y, and Z are subgroups of a group and Y eX, 
then X n YZ = Y(X n Z). This implies: 

(I) NI(HI n N 2)(HI n H 2) = N1(H I n H 2); 
(take X = HI' Y = HI n N 2 , Z = H 2); 

(2) HI n H2 n N1(HI n N 2) = (HI n N 2)(NI n H 2); 
(takeX=HI nH2' Y=H1 nN2,Z=N1)· 

The proof is now complete. 

Normal and Composition Series 

71. A normal series for a finite group G is a sequence of subgroups of G, 

{e} = Go c GI C ... c Gn = G, 

such that Gi - I is a proper normal subgroup of Gi for i = 1,2, ... , n. The 
factors ofa normal series are the quotient groups GtJGo , G2/GI , • • • , Gn/Gn- I • 

A refinement of a normal series is a normal series which contains all the 
subgroups of the original normal series (and perhaps more). A refinement 
which is not identical with the original series is called a proper refinement. 

72. The Schreier-Zassenhaus Theorem. Two normal series for a finite group 
have refinements of equal length whose factor groups are isomorphic. 
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Proof. Suppose that 

{e} = Go c GJ C ••• c Gn = G (I) 

and 

{e} = Ho c HI C ..• c Hm = G (2) 

are two normal series for the finite group G. We form a new series of sub­
groups of G, 

{e} = Go c G1 C ••. c Gn .. = G, (3) 

by setting Gk = GiGq+1 n Hr) for k = qm + r, where 0 :;:;; q < nandO:;:;; r:;:;; m. 
Note that 

Gqm = GiGq+1 n Ho) = Gq_I(Gq n H m) = Gq. 

Thus, we see that Gk is well defined and that each group of the original series 
(I) occurs in series (3). Furthermore, each group Gk is clearly a normal sub­
group of its successor Gk + 1 • However, series (3) need not be a normal series­
we may have Gk = Gu I for some values of k. 

Similarly, we form another new series of subgroups of G, 

{e} = Ho c HI c··· c Hn .. = G, (4) 

by setting Hk = Hq(Hq+ 1 n Gr) for k = qn + r, where 0:;:;; q < m and 
0:;:;; r:;:;; n. Remarks similar to those about series (3) apply to series (4). 

Now we see that series (3) and (4) have isomorphic factors. In fact for 
k = urn + v and 1= vn + u, we have by (70) 

GUI Gu(Gu+ 1 n Hv+1) Hv(Hv+l n Gu+ 1) fl ,+1 

Gk = Gu(Gu+ J n Hv) ;::;: Hv(Hv+I n Gu) = 7'f":' 
Finally, we obtain refinements of the normal series (I) and (2) by eliminating 
the redundancies from series (3) and (4). Since (3) and (4) have isomorphic 
factors, it follows that they have the same number of redundancies. Conse­
quently, the refinements of (I) and (2) obtained from them have the same 
length and isomorphic factors. 

73. A composition series for a finite group is a normal series which has no 
proper refinements. The following theorem is an almost immediate conse­
quence of the Schreier-Zassenhaus theorem. 

The Jordan-Holder Theorem. Two composition series for a finite group have 
the same length and isomorphic factors. 
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Proof. By the preceding theorem two composition series have refinements 
of equal length with isomorphic factors. However, the refinements must be 
identical with the original series, which by hypothesis have no proper 
refinements. 

73a.. Show that every finite group actually has a composition series . . 
73p. Define the length leG) of a finite group G to be the length (number of 
factors) of a composition series for G. Show that H <l G implies that 

leG) = I(H) + I(G/H). 

731. Let G be an abelian group of order n = p~lp~2 ... pZk where each Pi is 
prime. Show that leG) = VI + V2 + ... + Vk' 

74. A group is simple if it has for normal subgroups only itself and the 
trivial group. For example, groups of prime order are necessarily simple, and 
there are many others. Our interest here in simple groups is due to the 
following result. 

Proposition. A normal series is a composition series if and only if each factor 
group is a simple group. 

Proof. Suppose that G is a finite group and that 

{e} = Go c GI C ... c Gn = G 

is a normal series for G. If (*) is not a composition series, then we can obtain 
a proper refinement of(*) by inserting a new group G' into the series at some 
point, say Gk c G' C Gk+I' It follows that G'/Gk is a normal subgroup of 
Gk+ dGk and that Gk+ I/Gk is not a simple group. On the other hand, if 
Gk+dGk is not simple for some k, then there is a normal subgroup G", 

{e} c G" c Gk+I/Gk • 

It follows that G" = G'/Gk , where Gk c G' C Gk+I' and G' is a normal 
subgroup of Gk+ I' (Why?) Then (*) has a proper refinement and is not a 
composition series. 

Corollary. A group whose order is a power of a prime p has a composition 
series in which each factor is cyclic of order p. 

This is immediate from (52) and the proposition above. 

74a.. Construct a composition series for the dihedral group D6 (35~). 
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74~. Construct composition series for the groups Zs, D4 , and Q (46t). 

75. Solvable Groups. A finite group is solvable if it has a composition series 
in which each factor is a cyclic group. Since these factors must also be simple 
groups (74), they must all have prime order. Solvable groups are connected 
with the solvability of equations in radicals (139-149), which explains the 
unexpected terminology. We already know that every group of prime power 
order is solvable. We shall use the following results in Chapter 4. 

Theorem. Let H be a proper normal subgroup of a group G. Then G is 
solvable if and only if Hand G/H are solvable. 

Proof. The normal series {e} c H c G may be refined to a composition 
series for G, 

{e} = Go c G1 c ... c Gn = G. 

Suppose that Gk = H. Then composition series for Hand G/H are given by 

{e} = Go c G1 C ... C Gk = H 

and 

{e} = Gk/H c Gk+I/H c ... c Gn/H = G/H. 

Furthermore, by the first isomorphism theorem (68) we have for i ~ k, 

Thus, each factor of the composition series for G is a factor of either the 
composition series for H or that for G/H. Now the theorem follows imme­
diately. 

Corollary. Every finite abelian group is solvable. 

Proof. By induction on the order. The solvability of groups of orders I, 2, 
and 3 is clear. As induction hypothesis we assume the solvability of all abelian 
groups with order below n. Let G be an abelian group of order n. There is 
some prime p which divides n. By Cauchy's theorem (55), G has an element 
of order p. Since G is abelian, this element generates a normal subgroup H 
of order p. If p = nand H = G, we are finished because a group of prime 
order is clearly solvable. If p < n, then Hand G/H (which has order nip) are 
solvable and applying the theorem, G is solvable. This completes the induction 
step and the proof of the corollary. 
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75a.. Prove that any subgroup of a solvable group is solvable. 

75p. Prove that a group is solvable if it has a normal series whose factor 
groups are solvable. 

75y. Prove that a group with order below 60 is solvable. (See 5911.) 

751). Prove that a direct product of solvable groups is solvable. 

75r.. Prove that a group is solvable which has just one p-Sylow subgroup 
for each prime p dividing its order. 

/ 

The Symmetric Groups 

The symmetric groups (30) are of such great importance In the Galois 
theory that we make a special study of their properties. 

76. Let X denote a finite set. A permutation of X is a one-to-one onto map­
ping from X to X. The set d(X) of all permutations of X is a group in a 
natural way: if S, T E d(X), then ST E d(X) is the composite mapping, given 
by (ST)x = S(Tx) for x EX; the inverse of S E d(X) is just the inverse 
mapping S-I. A subgroup of .<a1(X) will be called a group of permutations 
ofX. 

A permutation group is a special kind of transformation group (53). If G 
is a group of permutations of the finite set X, then the action of G on X is 
given by g * x = g(x). This action satisfies: 

(I) g * (h * x) = (gh) * x for all g, h E G and all x EX; 
(2) e * x = x for all x EX; 
(3) if g * x = x for all x E X, then g = e. 

Only conditions (I) and (2) are required of transformation groups in general. 
An action of G on X which satisfies (3) is called effective, or alternatively, G 
is said to act effectively. It is clear that we could have made the definition: a 
permutation group is a group which acts effectively on a finite set. (See 53y.) 

77. The structure of the full group of permutations d(X) of a finite set X 
is completely determined by the number of elements of X. To be precise, aone­
to-one correspondence 4>: X ~ Y induces an isomorphism <1>: d(X) ~s1( Y) 
given by <I>(S) = 4>S4> -.1. Suppose now that X is a set with n elements 
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and that w: X ---+ N" is a one-to-one correspondence of X with the set 
N" = {I, 2, ... , n}. (We might call w an ordering of X.) Then w: X ---+ N" 
induces an isomorphism Q: d(X) ---+ _«I(N"). However, deN") is simply 
S", the symmetric group on n letters, defined in 30. In other words we have: 
if X is a set with exactly n elements, then d(X) is isomorphic to S", the sym­
metric group on /1 letters. 

As a consequence, the study of permutation groups is reduced to the study 
of the symmetric groups and their subgroups. Every finite group can be 
viewed as a permutation group of its own set of elements and, consequently, is 
isomorphic with a subgroup of S" where n is the order of the group. These 
observations indicate the significance of the symmetric groups. 

77a.. Show that every group may be considered as a group of permutations 
of its underlying set. (This is known as Cayley's theorem after the English 
mathematician Arthur Cayley (1821-1895), who was the first to consider 
abstract groups.) 

78. Let 1[: Nil ---+ Nil be an element of S", and let 1[k denote 1[(k). One way 
of expressing the permutation 1[ is by a tableau 

2 ... n). 
. . . 7t

n 1[2 

Clearly the order of elements in the top row is ;mmaterial. Note that the 
inverse of 1[ is 

-1 (1[1 1[ = 
I 

1[2 

2 
••• 1["). 
... /1 

This notation, used by Cauchy in his early studies of permutation groups, is 
needlessly complex. Each element of N" appears twice, and no advantage is 
taken of the order in which the elements are written. We shall develop a 
more efficient notation in which every permutation is written as a product of 
"cycles" in a unique way. 

The tableau notation makes it clear that the order of S" is n!. The element 
1[1 may be chosen in n ways; once 1[1 is chosen, there are n - I possibilities 
for 1[2; when 1[1' 1[2, ... , 1[i have been chosen, there remain n - i possible 
ways to choose 1[i+1' Thus, there are n . (/1 - I) ···2· I = /1! ways in which 
the bottom row of the tableau may be chosen, and thlls there are n! elements 

of S". 

7Sa.. Determine the number of permutations 1[ which leave no element 
fixed, that is, for which 1[k =F k for k = I, 2, ... , n. (This is a famous, but 
difficult, problem whi.ch was first solved by Nicolas Bernoulli (1687-1759), and 
later, independently, by Euler.) 
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79. Let a1 , a2 , ••• , ak E N n be distinct integers. We shall denote by 
(a 1, a2 , •.. , ak) the permutation 

~ ... ) 
I .. . 

which carries a1 to a2 , a2 to a3 , • .. , and ak to aI' leaving all the other elements 
of Nn fixed . We call (aI' a2 , ••• , ak) a cyclic permutation of order k or a 
k-cycle. This notation is almost too efficient: (a1, a2 , ... , ak) can denote an 
element of anyone of the groups Sn for which n ;:?; k. 

A cyclic permutation of order 2, (aI' a2 ), simply interchanges a1 and a2 

and is called a transposition. 
Two cyclic permutations (a1 , a2 , ••• , ak) and (b l , b2 , ••• , bl ) are disjoint 

if they have no entries in common. Disjoint cyclic permutations commute, 
that is 

However the groups Sn are not abelian for n > 2. 

79a.. Compute the number of distinct k-cycles in Sn. 

79~. Show that if n E Sn and n > 2, then there exists a transpOSitIOn 1: 

such that Tn =I- n1: (unless, of course, n is the identity element of Sn). This 
shows that Sn has trivial center for n > 2. 

79y. Prove that disjoint cyclic permutations commute. 

790. Show that Sn contains (Z) subgroups isomorphic to Sk X Sn-k, all of 

which are conjugates. (see 20y for definition of the binomial coefficient (Z) .) 

80. Theorem. Every permutation of n letters is the product of disjoint cyclic 
permutations in exactly one way (except for order of the factors). 

Proof. Let n E Sn. We shall denote by H the cyclic subgroup of Sn generated 
by n. H acts on the set N n = {I, 2, 3, ... , n} dividing it into disjoint orbits, 
Xl' X 2, ... , X,. In other words, two elements i and.i of Nn belong to the 
same orbit if and only if j = nk(i) for some power nk of n. In any orbit X k we 
may list elements in order 

so that ak i+l = n(aki) and ak! = n(aksJ. (Why is this possible?) We let Cik 

denote the cyclic permutation (akl , an, . .. , aks.)' We claim that n = Ci 1Ci2 '" Ci, . 
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To prove this we need only show that nand IXl1X2 ••• IX, have the same effect 
on any element x E Nn • If x E X k, then IXj(X) = x for i # k and IXk(X) = n(x). 
Therefore, 

Finally, the expression n = IXl1X2 ••• cx, is clearly unique except for the order 
of the IX;'S. 

Note that we may include or exclude factors of the form CXk = (m) since 
every I-cycle is the identity. 

In practice it is a simple matter to express a permutation as the product of 
disjoint cyclic permutations. For example 

(
I 2 3 4 5 6 7) 
56 I 7324 =(\,5,3)(2,6)(4,7). 

Corollary. If CX I , CX 2 , ... , CXs E Sn are disjoint cyclic permutations, then the 
order·ofcx l cx2 ... CXs is the least common multiple of the orders of the factors. 

Proof. Let k j denote the order of IX j , and let k be the least common 
multiple of the k j • Since the cx;'s commute, we have 

so that o(cxl CX 2 ... IXs) divides k. Since the CX j are disjoint, it follows that 
(IX11X2 ••• IX,)l = e implies cx\ = e for each i. Then k j II for each i, and thus 
k II. In particular k 10(cx l cx 2 ... cxs)' and therefore 0(CX l CX 2 ... cx,) = k. 

Corollary. Every permutation is a product of transpositions. 

Proof. It is enough to show that every cyclic permutation is a product of 
transpositions. This is easy because 

800t. Let n E Sn be written as a product CX l IX 2 ••• CXn of disjoint cycles, where 
for convenience we assume that 

We shall call the decreasing sequence of natural numbers O(IXI)' 0(CX2)' 
o(cxn) the form of n. Show that two elements of Sn are conjugate if and only 
if they have the same form. 

80p. Compute the number of elements which have the form k l , k 2 , ... , kin' 
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80y. Show that Sn is generated by the transpositions 

(I, 2), (2, 3), ... , (n - I, n). 

801). Show that Sn is generated by the cycles (I, 2) and (I, 2, ... , n). 

81. Even and Odd Permutations. Let f!jJn denote the polynomial of n 
variables Xl' X2, ... , Xn which is the product of all the factors Xj - Xj with 
i < j; that is, 

The symmetric group Sn acts on the polynomial f!jJn by permuting the variables. 
For n E Sn we have 

f!jJn(xn(1)' X n(2), ••• , xn(n)) = (sgn n)f!jJnCx l , x 2 , ••• , xn), 

where sgn n = ± 1. If the sign is positive, then n is called an even permutation; 
if the sign is negative, then n is called an odd permutation. (Sgn is an abbrevia­
tion of the Latin word signum.) 

It is not difficult to see that sgn(rr(J) = (sgn n)(sgn (J). This means that: 

the product of two even or two odd permutations is even, 
the product of an even and an odd permutation is odd. 

It follows that the set of even permutations is a subgroup of Sn, called the 
alternating group on n letters and customarily denoted An. We may regard 
sgn: Sn -> K2 as a homomorphism from Sn to K2 = {± I}, the group of square 
roots of unity (44). This shows that An is a normal subgroup of Sn and the 
quotient group Sn/An is isomorphic to K 2 • 

It is immediate that o(An) = n !/2. 

81a. Determine the sign of a k-cycle in terms of k. 

82. Proposition. Every even permutation of n letters, n ;:::.: 3, is the product 
of cyclic permutations of order 3. 

Proof. There are no cyclic permutations of order 3 in Sn for n = 1 or 
n = 2, but the identity is always an even permutation. Thus, the proposition 
is false for n < 3. Our proof will be inductive, beginning with n = 3. 

The even permutations of 3 letters are the identity e and the 3-cycles 
(I, 2, 3) and (I, 3, 2). Thus, we have easily disposed of the case n = 3. 

Now suppose the proposition proved for even permutations of less than n 
letters, and suppose n E An. The permutation (J = (nn' n, i) . n, where nj = n, 
satisfies 

(J(n) = (rrn' n, i) . n(n) = (nn' n, i)(nn) = n 
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and is even. Since a leaves n fixed and is even, a may be considered as an 
even permutation of the letters 1, 2, ... , n - 1. By the inductive hypothesis 
a is the product of 3-cycles, say a = IX1IX2 • . • IXs' Setting IXo = (nn, i, n), we 
have 

and we have expressed n as a product of 3-cycles. 

82cx. Show that the alternating group An is generated by the 3-cycles (I, i, n) 
for i = 2, 3, ... , n - 1. 

83. Theorem. The alternating group An is simple except for n = 4. 

Proof. Recall that a group is simple if it has only itself and the trivial 
group as normal subgroups. For n < 4 the order of An is either 1 or 3, and 
An is obviously simple. The major part of the proof is the case n > 4. 

Let N be a nontrivial normal subgroup of An for n > 4. We must show that 
N = An. The first step is to see that N contains a 3-cycle. 

Let IX of- e be an element of N which leaves fixed as many elements of Nn as 
possible. As guaranteed by 80, let 

where the IXi are disjoint cycles, which we may assume are given in order of 
decreasing length. Renumbering if necessary, we may assume that 

IXI = (I, 2, . . . , k) 

and, when s > 1, that 

IX2 = (k + 1, k + 2, ... , I). 

We distinguish several cases. 
Case 1. IX moves each of the numbers 1, 2, 3, 4, 5. (This occurs when s > 2, 

when s = 2 and a = (I , 2, .. . , k)(k + 1, k + 2, . . . , I) with I> 4, or when 
s = 1 and a = a l = (I, 2, ... , k) for k > 4.) Setting f3 = (3, 4, 5), the element 
f3- la- l f3 belongs to the normal subgroup N , and thus f3 - 1IX- 1f3a E N. How­
ever, it is easily checked that the permutation f3 - I(J;-lf3a leaves the number 1 
fixed in addition to leaving fixed all the elements fixed by a. This contradicts 
the choice of a, and case 1 is impossible. 

Case 2. a moves the numbers 1, 2, 3, 4 and no others. (This occurs only when 
a = (I, 2)(3 , 4), since (I, 2, 3, 4) is an odd permutation.) Again we set 
f3 = (3, 4, '5) and argue that the element f3 - la - 1f31X belongs to N. However, 
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direct computation shows that {3-1a- 1 {3a = (3, 4, 5) = {3. Thus, {3 E Nand {3 
moves fewer elements than ex. This contradiction eliminates case 2. 

Case 3. ex moves the numbers I, 2, 3 and no others. (This occurs only when 
ex = (1,2, 3).) There are no other cases now that the first and second are 
eliminated. Thus, we have shown that N contains a 3-cycle, which we may 
assume to be (I, 2, 3). 

It remains to show that N contains every 3-cycle. Choose an even permu­
tation 

= (1 2 3 ... ) 
a . . k . I J ... 

Then, a(l, 2, 3)a- 1 = (i,j, k) belongs to the normal subgroup N. Varying i,j, 
and k, we obtain all 3-cycles. Thus, N contains every 3-cycle, and in view of 
82, N = An' and we are finished. 

Remark. The group A4 is not simple: it contains a normal subgroup of 
order 4 containing the elements e, (1,2)(3,4), (1,3)(2,4), and (1,4)(2,3). 

831X. Verify that the set 

N = {e, (I, 2)(3, 4), (I, 3)(2, 4), (I, 4)(2, 3)} 

is a normal subgroup of A 4 • Show that K = {e, (I, 2)(3, 4)} is normal in N 
but not in A4 . (This shows that a normal subgroup of a normal subgroup need 
not be normal in the whole group.) 

83p. Show that A4 has no subgroup of order 6. 

84. Theorem. For n > 4, the symmetric group Sn is not solvable. 

Proof Since the groups K2 ~ Sn/An and An (for n > 4) are simple, the 
normal series 

{e} c An C Sn 

is a composition series for S when n > 4. However, An is not abelian for 
n> 3. (For example, (1,2,3)(2,3,4) = (1, 2)(3, 4) while (2,3,4)(1,2,3) = 

(I, 3)(2, 4).) Consequently, An is not cyclic for n > 3. As a result Sn is not 
solvable for n > 4. 

841X. Construct composition series for the groups S2, S3, and S4' and 
verify that these groups are solvable. 

84p. Show that for n > 4 the only normal subgroups of Sn are {e}, An' and 
Sn itself. 
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85. We have already remarked that a finite group can be viewed as a 
permutation group of its set of elements. We can improve this as follows. 

Theorem. If H is a subgroup of a finite group G and H contains no nontrivial 
normal subgroup of G, then G is isomorphic to a subgroup of ,o1(G/ H) , the 
group of permutations of the set G/H. 

Proof. Define a homomorphism 1>: G -> d(G/H) by setting 

1>(g)(xH) = (gx)H all x E G. 

Ker 1> is a normal subgroup of G (65). An element g belongs to Ker 1> if and 
only if(gx)H = xH for all x E G, or what is the same thing, x - 1gx E H for all 
x E G. In other words, Ker 1> is the intersection of H and all its conjugates. 
Thus, Ker 1> cHand by hypothesis Ker 1> must be trivial. It follows that 
G~ 1m 1>. 

Corollary. For n > 4, An is the only proper subgroup of index less thann in Sn. 

Proof. It follows from 841l that for n > 4, An is the only proper, nontrivial, 
normal subgroup of Sn. Suppose that H is a subgroup of Sn and [Sn: H] < n. 
If [Sn: H] = 2, then H is normal and H = An. On the other hand [Sn: H] > 2 
implies An ¢ H. Thus, the hypothesis of the theorem is satisfied, and Sn is 
isomorphic to a subgroup of d(Sn/H). However, 

o(d(Sn/ H» = [Sn: H]! < n! = o(Sn), 

which is a contradiction. 

85a. Letf(x), x 2 , •.. , x n) be a function of n variables, n > 4. Let v denote 
the number of distinct functions obtained when the variables x), x 2 , • .. , Xn 

are permuted. Show that v > 2 implies v ~ n. (The general problem of what 
can be said about the number v is classic and one of the motivating ideas 
for group theory. Results of this type were given by many early group 
theorists, including LaGrange, Ruffini, Abel, Cauchy, and Galois.) 

86. A subgroup H of Sn is transitive if for every pair of elements i,.i E Nn 
there is an element n E H such that n(i) = j. For example, the cycle ex = 

(\, 2, .. . , n) generates a transitive subgroup of Sn: the element ex j
- i carries i 

to j. The following theorem about transitive subgroups will be needed to 
establish unsolvability of quintic equations in general. 

Theorem. Let H be a transitive subgroup of Sp where p is a prime number. If 
H contains a transposition, then H = Sp-
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Proof. We may assume without loss of generality that (1,2) is the trans­
position H contains. An equivalence relation on the set N p = {I, 2, ... , p} 
is defined by i - j if and only if the transposition (i, i) E H . From the transi­
tivity of H it follows that each equivalence class has the same number of 
elements; in fact, if ¢ E Hand ¢I = ¢(l) = i, then ¢ yields a one-to-one cor­
respondence from the equivalence class of I to that of i since (I, -k) E H if 
and only if 

The number s of elements in any equivalence class must divide the prime p, 
and thus s = 1 or s = p. However, the equivalence class of 1 contains at least 
the two elements 1 and 2. Consequently, there can be only one equivalence 
class which has p elements. In other words, H contains all the transpositions 
of S p' Since every permutation is a product of transpositions (80), we have 
H=Sp' 
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Chapter 3 
A field is an algebraic structure in which the four rational operations, addi­

tion, subtraction, multiplication, and division, can be performed and in 
which these operations satisfy most of the familiar rules of arithmetical 
operations with numbers. In the formal definition offield structure, we assume 
only that addition and multiplication are given; subtraction and division are 
defined as the inverse operations. Division by 0 is automatically prohibited by 
the definition. 

Field theory is the theoretical background for the theory of equations. It 
does not make sense to ask, for example, whether the equation x 2 + x + I = 0 
is solvable, without specifying the field in which we want the solutions to lie. 
If we specify the field to be the set R of all real numbers, then the equation 
x 2 + x + I = 0 has no solutions, which is to say, there are no real numbers 
satisfying this equation. On the other hand there are complex numbers (the 
cube roots of unity, wand w 2

) which do satisfy this equation in the field C of 
all complex numbers. 

From an abstract viewpoint the theory of equations is just the study of 
field theory. In this chapter we present the basic field theory which is needed for 
Galois theory in the next chapter. To illustrate the depth of field theory, we 
take up the ancient problem of constructibility of geometric figures with 
straightedge and compass and prove that, in general, angles are not trisect­
able in this way. 

66 
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Definition and 
Examples of Field Structure 

87. Afield is a set Fwith two operations (called addition and multiplication) 
which assign to each ordered pair (a, b) of elements from F, two elements of F, 
called their sum, a + b, and their product, ab, in such a way that: 

(I) F is an abelian group under addition (with identity element 0); 
(2) F*, the set of nonzero elements of F, is an abelian group under multi­

plication; 
(3) multiplication is distributive over addition; that is, for any three 

elements a, b, c E F, 

a(b + c) = ab + ac and (a + b)e = ac + bc. 

As customary in the additive notation for abelian groups, we shall denote 
the additive inverse of a E F by - a. If a E F*, then a has a multiplicative 
inverse as well, and we denote this by a-lor l/a. We always denote the multi­
plicative identity element (identity element of the group F*) by I. 

87a. Show that Oa = 0 = aO for any element a of a field F. 

87p. Show that (- l)a = -a for any element a of a field F. 

87y. Let a and b be elements of a field F such that ab = O. Show that a = 0 
or b = O. 

870. If a and b are elements of a field F and b i= 0, let alb denote ab -I. Show 
that when a i= 0, l /(a/b) = b/a. For a, c E F and b, dE F* prove the rule for 
addition of fractions: 

871:. Construct a field with four elements. 

87~. Let F be a field and let E = F x F. Define addition and multiplication 
in E by the rules: 

(a, b) + (c, d) = (a + c, b + d) 

and 

(a, b)(e, d) = (ac - bd, ad + be). 

Determine conditions on·F under which E (with these operations) is a field. 
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87TJ. A mapping ¢: F --> E of fields is a field homomorphism if it preserves 
addition and multiplication-that is, 

¢(a + b) = (¢a) + (¢b) and ¢(ab) = (¢a)(¢b). 

Show that a field homomorphism is always one to one or trivial (every element 
mapped to zero). Explain why an onto field homomorphism is a field isomor­
phism. (Field isomorphism has the obvious meaning.) 

88. The set C of all complex numbers is a field under the usual rules for 
addition and multiplication of complex numbers. Similarly, the set R of all 
real numbers and the set Q of all rational numbers are fields. 

A subfield of a field E is a subset F such that (I) F is a subgroup of E under 
addition and (2) F* = F - {O} is a subgroup of £* under multiplication. Of 
course a subfield of a field is itself a field. 

Clearly, Q and Rare subfields of C, and Q is a subfield of R. We shaH use 
the term number field to designate subfields of C. Thus, Q and R are number 
fields. Before long we shaH have many other examples of number fields-in 
fact they wiH be the main source of examples and applications for field theory. 

8Sa. Show that a subset F of a field E is a subfield if and only if F* is non­
empty and a, bE F implies a - bE F and (when b =I- 0) alb E F. 

88Jl. Show that the set 

Q(J 2) = {z E CI Z = a + bJ2; a, b E Q} 

is a number field. 

88y. Show that the set 

Q(i) = {z E CI Z = a + bi; a, bE Q} 

is a number field . 

880. Prove that every number field contains Q. 

89. The Prime Fields Zp . In 34 we observed that for p a prime number, the 
elements of Zp, except [Olp, form a group Z~ under mUltiplication. Clearly, 
Z~ is abelian. Furthermore, we have 

[a]p([b]p + [e]p) = [a]p[b + e]p = [a(b + e)]p = [ab + ae]p 

= [ab]p + [ae]p = [a]p[b]p + [a]p[e]p, 

which shows that m.ultiplication is distributive over addition in Zp. Therefore, 
when p is prime Zp is afield. 
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89a. Let F be a field. If a E F and n E N, we let na denote the element of F 
obtained by adding a to itself n times. Thus, 2a = a + a, 3a = a + a + a, and 
so forth. We say that a field F has characteristic 0 if for a E F and n E N, na = 0 
implies a = o. If F does not ha,>;e characteristic 0, then na = 0 for some 
a E F* and some n E N. In this case we define the characteristic of F (denoted 
char F) to be the smallest natural number n such that na = 0 for some a E F*. 
Show that char F = n implies that na = 0 for all a E F*, and that n is prime. 

89~. Show that a field F has characteristic 0 if and only if there exists a 
one-to-one field homomorphism ¢: Q ..... F; show also that char F = p if and 
only if there exists a one-to-one field homomorphism ¢: Zp ..... F. 

89y. Show that for a field F of nonzero characteristic p the mapping ¢: F ..... F 
given by ¢a = aP is a field homomorphism. Show that ¢ is an isomorphism 
when F is finite. 

Vector Spaces, 
Bases, and Dimension 

90. A vector space over a field F is an additive abelian group E, together 
with an operation (called scalar multiplication) which assigns to each element 
c E F (called a scalar) and each element a E E (called a vector) an element 
ca E E in such a way that: 

(I) c(da) = (cd)a for any three elements c, dE F and a E E; 
(2) (c + d)a = CC( + da for any elements c, dE F and a E E; 
(3) c(a + (J) = ca + c(J for any elements c E F and a, (J E E; 
(4) la = a for any element a E E. 

The study of vector spaces is called linear algebra. The next few articles will 
discuss some elementary concepts of linear algebra. 

91. Suppose that E is a vector space over F. A finite set of elements of E, 
A = {aI' a2 , ... , am} , is linearly dependent over F if there is a linear relation, 

with coefficients cI , c2 , ... , C" E F, not all zero. If there is no relation of the 
form (*) among the a;'s except the trivial one (in which all coefficients Ci are 
zero), then the set A is linearly independent over F. 
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We extend the notion of linear independence to infinite sets as follows: an 
infinite subset of E is linearly independent over F if each one of its finite 
subsets is linearly independent over F. 

92. Suppose that E is a vector space over F. A set S of elements of E is a 
spanning set for E over F if every element of E can be written as a linear com­
bination, 

of elements 0"1> 0"2, ..• , O"n E S and coefficients cl , c2 , ••• , Cn E F. 
If there exists a finite spanning set for E over F, then E is called a finite 

dimensional vector space over F. 

921X. Let S be any subset of a vector space E over F. Show that the set of 
vectors E' of E which can be written as linear combinations of vectors in S is a 
vector space over F. (E' is said to be a subspace of E. See 92p.) 

92p. A subset E' of a vector space E over F is a subspace of E' if every linear 
combination of vectors in E' belongs to E'. Show that a subspace of a vector 
space is again a vector space (over the same field). 

92y. A linear trans/ormation from a vector space E over a field Fto a vector 
space E' over F is a mapping T: E -> E' such that 

T(a + (3) = (Ta) + (Tf3) and T(ca) = c(Ta) 

for all vectors a and f3 and every scalar c in F. Show that the sets 

KerT= {aEEITa=O} and ImT= {a'EE'la'=Ta,aEE} 

are subs paces of E and E', respectively. 

93. Again suppose that E is a vector space over F. A basis for E over F is a 
minimal spanning set for E over F. Explicitly, a set B of elements of E is a 
basis for E over F if 

(\) B is a spanning set for E over F, 
(2) no proper subset of B spans E over F. 

Proposition. A basis is linearly independent. 

Proo}: Let {f3I' f32' ... , f3n} be a finite subset of a basis B for E over F. 
We shall see that if {f3I' f32' ... , f3n} were linearly dependent, B could not 
be minimal. Suppose that 
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were a linear relation among the [3;'s with CI , C2 , ••• , Cn E F, not all zero. We 
may suppose, without loss of generality, that CI 01- O. Then it would follow 
from (*) that 

in other words, that [31 is a linear combination of the elements P2, [33"'" Pn 
with coefficients in F. It is not hard to see that since B spans E over F, 
the set B - {PI} would also span E over F. However, this would show that B 
does not satisfy condition (2) and is not a basis. Therefore it must be true that 
every finite subset of B is linearly independent and that B i'tself is linearly 
independent. 

Proposition. A linearly independent spanning set is a basis. 

Proof. Suppose that B is a linearly independent spanning set for E over 
F. If B is not a basis, then some proper subset S of B also spans E 
over F. Choose P E B - S , Since S spans E over F, there are elements 
0"1' 0"2 ' " " O"m E S and coefficients cI , C2, .,., Cm E F such that 

However, this implies that the set {P, 0"1' 0"2' . . " O"m}, which is a finite subset 
of B, is linearly dependent over F. This contradicts the linear independence of 
B. Thus, B must be a basis, 

94. Proposition. If B is a basis for E over F, then every element of E may be 
written uniquely as a linear combination of elements of B with coefficients in F. 

Proof. We have only to prove uniqueness since B spans E over F, Suppose 
that PEE can be written in two ways as a linear combination of elements of B, 
say 

P = CIPI + C2 P2 + ... + cnPn, 

P = diP! + d2P2 + ... + dnPn , 

where we assume without loss of generality that the same elements, PI ' P2 , . , , , 
Pn , of B are involved in the linear combinations, Now subtracting the two 
expressions above, we have 

Linear independence of the set {[31 , P2 , .,., Pn} implies that C j = d j for 
i = I, 2, . .. , n. Uniqueness is proved. 
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95. Proposition. If E is a finite dimensional vector space over F, then every 
basis/or E over F isfinite and all such bases have the same number 0/ elements. 

Proof. Since E is finite dimensional over F (92), there is a finite spanning 
set for E over F from which a finite basis can be selected. (How?) Let B = 

{{Jl' {J2, ... , {In} be such a finite basis, and let A be any other basis. 
Choose an element (Xl EA. Let (Xl be written as 

(I) 

Since (Xl is a basis element and therefore nonzero, not all the coefficients C i 

are zero. Without loss of generality we may suppose that Cl i= O. Now we 
claim that the set Bl = {(Xl' {J2, ... , {In}, in which (Xl has replaced PI' is again 
a basis for E over F. Since 

(2) 

every element of E can be written first in terms of the basis elements PI' P2, 
... , Pn; then the right hand side of (2) can be substituted for {Jl yielding an 
expression in terms of the elements (Xl' P2 , ... , Pn. This shows that Bl spans 
E over F. It remains to show that Bl is linearly independent. Suppose now 
that 

(3) 

is a linear relation among the elements of B l . Substituting (1) into (3) gives a 
relation among the elements of B: 

(4) 

The linear independence of B implies that the coefficients in (4) are all zero, 
from which we conclude that d l = 0 (since cl i= 0 by assumption above), 
and consequently, that d2 = d3 = ... = dn = O. We have shown that Bl is a 
linearly independent spanning set for E over F and thus a basis by (93). 

Next choose an element (X2 E A which is not a scalar multiple of (Xl' (If no 
such (X2 exists, it must be that n = 1 and the argument is finished .) We can 
write 

c; E F. 

Since (X2 is linearly independent of (Xl' not all the coefficients c; , c; , ... , c~ are 
zero. Without loss of generality, we may assume that c; i= O. Now we claim 
that the set B2 = {(Xl' (X2, {J3, ... , Pn} is a basis for E over F, which is proved 
by an argument like that above . 
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Continuing in this fashion, we arrive at a basis En = {lXI' IX2, ..• , IXn} made 
up entirely of elements from A. Since A is a basis and minimal, it follows that 
Bn =A. 

The number of elements in a basis for E over F is called the dimension of E 
over F and is denoted [E: F]. 

95a. Prove that a subspace E' of a finite dimensional vector space E over F is 
again finite dimensional and that [E':F]:S; [E: F]. 

9Sp. Let E' be a subspace of a vector space E over F. An equivalence relation 
on E is defined by IX = f3 mod E' if and only if IX - f3 E E', and we denote the 
quotient set of this equivalence relation by EIE'. Show that EIE' is a vector 
space over F. Show that E finite dimensional implies that EI E' is finite dimen­
sional. 

9Sy. With the same hypothesis as in 9Sp, show that when E is finite dimen­
sional the dimension of E is the sum of the dimensions of E' and EIE'. 

Extension Fields 

96. A field E is called an extension (field) of a field F if F is a subfield of E. 
This additional terminology seems superfluous, and technically it is. It reveals, 
however, a difference in modes of thought between field theory and group 
theory. In group theory we are often interested in determining the sub­
structure of a group whereas in field theory we are more interested in what 
superstructures a field can support. Frequently we shall extend a field by 
adjoining to it additional elements. 

Proposition. An extension field E of a field F is a vector space over F. 

Proof. Clearly, E is an abelian group under addition. Scalar multiplication 
of an element c E F and an element IX E E is defined as the product CIX where 
both c and IX are considered as elements of E. Now the four properties required 
of scalar multiplication (90) are immediate consequences of E being a field. 

When an extension field E of a field F is a finite dimensional vector space 
over F, we shall refer to E as a finite extension of F and to the dimension 
[E: F] as the degree of E over F. 
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Finally, we note that a sequence of extension fields 

is called a tower of fields, and Fo is called the ground field. 

96a. Show that the degree of Q(J2) over Q is 2 (88P). 

96p. Show that [C: R) = 2. 

96y. Let w = eZni/3 = - t + tJ - 3. Show that the set 

Q( w) = {z E CI Z = a + bw; a, b E Q} 

is an extension field of Q of degree 2. 

960. Show that a finite field (that is, a field with a finite number of elements) 
of characteristic p (89a) has pn elements for some n. 

97. Proposition. If Dis afinite extension of E and E is afinite extension of F, 
then D is afinite extension of F. Furthermore, 

[D: F) = [D: E][E: F). 

Proof. Let A = {ai' az , ... , am} be a basis for E over F, and let B = 

{PI' Pz, ... , Pn} be a basis for Dover E. We shall show that the set 

is a basis for Dover F. 
(I) C spans Dover F. Suppose'}' E D. Using the basis B, we write 

'}'i EE. 

Each of the elements'}' i E E, i = I, 2, ... , n, can be written as 

Substituting these expressions into the one above yields 

n m 

'}'=L L cijajPi, 
i= 1 j= 1 

(2) C is linearly independent. Suppose that there is a linear relation among 
the elements of C with coefficients in F, 

" m 

L L 
i=lj=l 
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We may regard this as a linear relation among the elements of B with coeffi­
cients Y i = IJ = 1 C ij r:t. j, which must be zero since B is a basis and linearly 
independent. On the other hand, the linear relations 

m 

I Cijr:t.j = 0, i= 1,2, ... , m, 
j=l 

imply that all the coefficients cij are zero for 

i = 1,2, ... , nand j = 1,2, ... , m. 

We have shown that C is a linearly independent spanning set for Dover F; 
hence it is a basis. Since C has a finite number of elements, it follows that D is a 
finite extension of F. Finally, we have 

[D: F] = nm = [D: E][E: F]. 

Polynomials 

98. A polynomial over a field F in the indeterminate x is an expression of the 
form 

where Co, cl , ... , Cn are elements of F, called coefficients of the polynomial. 
Polynomials are completely determined by their coefficients, which is to say, 
two polynomials over F in x are equal if their corresponding coefficients are 
equal. 

The phrase" an expression of the form" in a mathematical definition is 
hardly consonant with modern standards of rigor, and we shall eventually 
give a more precise treatment of polynomials (156). 

We shall usually denote polynomials by a single letter such as 1 and write 
an equation such as 

to specify the coefficients. Then, 1(2), l(xP), I(y + I), etc., will indicate the 
corresponding expressions in which 2, xP, y + I, etc. have been substituted 
for x. The largest number k for which Ck #- 0 is called the degree of/(denoted 
deg/), and Ck is called the leading coefficient off If all the coefficients of 1 are 
zero, we write 1 = 0 and do not assign a degree to f. 
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Polynomials are added and multiplied just as in elementary algebra, and we 
have 

deg(f + g) :s; max {deg/, deg g}, 

deg(fg) = degl + deg g, 

whenever the polynomials involved are nonzero. 
If I is a polynomial over F in x and a E F, then la is an element of F. The 

assignment a --+ la defines a function F --+ F, which we shall denote f It may 
happen, however, that two distinct polynomials define tr..e same function. For 
example, the polynomials x and xP over Zp have this property. (Why?) 

F[x] will denote the set of all polynomials in x over F. A polynomial of the 
form Ix = c is called a constant polynomial and will sometimes be identified 
with the corresponding element c E F. In this way we may view F as a subset 
of F[x]. 

98a. A rationallunction over a field F in the indeterminate x is a ,(formal) 
quotient plq of polynomials p and q over F. Two such quotients, plq and rls, 
are equal if and only if ps = qr in F[x]. We denote the set of all rational func­
tions of x over F by F(x). We identify a rational function pII (where I is the 
constant polynomial Ix = I) with the polynomial p. Thus, F[x] is identified 
with a subset of F(x). (Sometimes polynomials are called integrallunctions.) 
Show that F(x) is a field under the operations defined by 

p r ps + qr 
-+-=---, 
q s qs 

99. The Division Theorem lor Polynomials. If I and 9 are polynomials over F 
and 9 =I 0, then there exist over F unique polynomials q and r such that 
1= qg + r and either r = ° or deg r < deg g. 

Proof. Let R denote the set of all polynomials over F which have the form 
1- qg for some polynomial q over F. If R contains 0, the polynomial with 
all coefficients zero, we set r = ° = I - qg, and we are finished except for 
uniqueness. 

Suppose'then ° rt: R. Then the set 

s = {n E ~ I n = deg h, hER} 

is nonempty since either degl E S or, when I = 0, deg 9 E S. Therefore, S has a 
smallest element m. By definition of S we have m = deg r for some r E R, and 
by definition of R we have r = I - qg for some q. In other words, 1= qg + r, 
and it remains to show that deg r < degg. Suppose that m = deg r;;:: degg = n. 

Clearly, there is an element c E F such that the polynomial s given by 
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sx = rx - cxm-n(gx) = Ix - [(qx) + (cxm-n)](gx) 

has degree m - I or less. However, s E R and this contradicts the minimality of 
m. It must be that deg r < deg g. 

Suppose q' and r' are polynomials satisfying the same conditions as q and r. 
Then I = qg + r = q'g + r' implies 

(q - q')g = r' - r. 

If q - q' i= 0, then taking degrees on both sides of this last equation we must 
have 

deg(q - q') + degg = max{deg r', degr}. 

This implies that either deg 9 :::;; deg r' or deg 9 :::;; deg r, both of which are 
wrong. Thus, we must have q = q' and, consequently, r = r'. This proves 
uniqueness. 

In practice it is not difficult to determine q and r: we simply carry out the 
customary long division of I by 9 obtaining q as the quotient and r as the 
remainder. If r = 0, then we say that 9 divides I and we write 9 If. 

Corollary. (The Remainder Theorem) III is a polynomial over the field F and 
a is an element 01 F, then there is a unique polynomial q over F such that 

Ix = (x - a)(qx) + (fa). 

Proof. Applying the division theorem with 9 given by gx = x - a, we have 

Ix = (x - a)(qx) + (rx) 

where r = ° or deg r < deg 9 = I. Thus, rx is a constant, and taking x = a 
shows that rx = la. 

99(X. Indicate the changes needed in the proof of the theorem above to prove 
the following: if I and 9 are polynomials with integer coefficients and 9 is 
monic, then there are unique polynomials q and r with integer coefficients such 
that I = qg + r where either r = ° or deg r < deg g. (A polynomial is monic if 
the leading coefficient is I.) 

100. An element a of the field F is a root of the polynomial I over F if la = 0. 
In other words, a is a roo.t of I if f, considered as a function, assigns the 
value ° to a. 

The remainder theorem just proved implies: -if a is a root 01 f, then Ix = 

(x - a)(qx), or in other words, (x - a) divides f. 
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Proposition. A polynomial of degree n over the field F has at most n roots in F. 

Proof The proof is by induction on n. To start the induction, we note that 
a polynomial of degree 0 is a (nonzero) constant and has no roots. Now 
suppose the proposition is true for polynomials of degree less than n. Letfbe a 
polynomial of degree n. Iffhas no roots in F, then we are finished. Iffhas a 
root a E F, thenfx = (x - a)(qx) for some polynomial q over F of degree n - I. 
Then q has at most n - I roots in F; it clearly follows thatf can have at most 
n roots since a root off is either a or a root of q. 

A polynomial of degree n over the field F which has all n roots in F is said 
to split over F. Clearly, a polynomialf of degree n splits over F if and only if it 
can be factored as 

where ai' a2 , ••• , a" E F are the roots off 

Theorem. The multiplicative group F* of a finite field F is cyclic. 

Proof Since F* is abelian, each of its Sylow subgroups is normal, and 
therefore, for a prime dividing the order of F*, there is just one Sylow 
subgroup. It follows from 599 that F* is the direct product of its Sylow 
subgroups. Furthermore, the orders of the Sylow subgroups are relatively 
prime, and therefore, it follows from 43y that F* is cyclic if each Sylow 
subgroup is. To see this, let H denote the p-Sylow subgroup for a prime p 
dividing the order of F*, and let a be an element of maximal order, say pk, in 
H. Then the order of every element of H must divide pk. From the preceding 
proposition it follows that there cannot be more than pk elements of F 
satisfying the equation xP' = I, and thus o(H) = pk = o(a), from which we 
conclude that H is cyclic. 

Exercise 100£ suggests an alternate proof of this theorem. 

100a. The formal derivative of the polynomialfx = Co + clx + ... + c"X' is 
the polynomial f'x = CI + 2c2 X + ... + nc" X'-I. Verify the rules of formal 
differentiation: (f + g)' = /' + g' and (fg)' = /,g + fg'· 

lOOp. Show that a polynomial f over a field F and its derivative /' have a 
common root a in F if and only if a is a multiple root off, that is, (x - a)2 
dividesf. 

100y. Show that there exists one and only one polynomial of degree n or less 
over a field F which assumes n + I prescribed values fao = flo, fa l = fll' ... , 
fa" = fl" where ao , 0: 1 , ... , a" are distinct elements of F. (The expression for f is 
called the Lagrange interpolation formula.) 

1000. Show that every element of a finite field with q elements is a root of the 
polynomial xq 

- x. 
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100£. By counting tbe number of elements of F which are roots of X' - I for 
various values of n, show that the multiplicative group F* oj a finite field F is 
cyclic. (See 25a.) 

lOO~. For p a prime construct a group isomorphism Zp-l --+ Z~. 

10011. For p a prime show that (p - I)! == -I mod p. (This is known as 
Wilson's theorem after Sir John Wilson (1741-1793), who was a student of 
Edward Waring (1736-1798). The statement, but not the proof, of this theorem 
first appeared in Waring's Meditationes Algebraicae of 1770 (p. 218). The first 
published proof is due to Lagran~e in 1771. Lagrange also proved the con­
verse: if(n - I)! == -I mod n, then n is prime.) 

1009. Show that a polynomial j:, = Co + c1x + ... + c"X' over Z has a root 
p/q E Q , where p, q E Z and (p, q) = I, only if p I Co and q I c" . 

lOOt. LetJbe a polynomial over a field Fwhose derivative (IOOcx) is O. Show 
that if char F = 0, thenJ is a constant polynomial. What can one say in the 
case where char F of O? 

101. In general a polynomial of degree n over a field may have any number 
of roots from 0 to n in that field. A notable exception to this occurs for the 
field of complex numbers C. 

The Fundamental Theorem oj Algebra. A polynomial oj positiL'e degree ouer 
the field C oj complex numbers has a root in C. 

Proof. Unfortunately, all proofs of this theorem use analysis and therefore 
are not really algebraic. We shall give a proof due to Ankeny which uses the 
theorem of Cauchy from complex function theory. (This proof is included for 
completeness only and may be skipped by the reader unfamiliar with complex 
function theory.) 

Let J be a polynomial of degree n ~ lover C given by 

Jz = Co + c1z + ... + c"z". 

We let f denote the polynomial of degree n over C whose coefficients are the 
complex conjugates of tbose of J; tbat is, 

!z=co+i\z+···+C"z". 

Now the product 4> = Jf is a polynomial of degree 211 over C with real coeffi­
cients. (Why?) We observe that it is sufficient to pro~'e that 4> has a root: if 
4>et. = (fet.)(fct.) = 0, then either Jet. = 0 (and I has CI. as a root) or j~ = 0 and 
Iii = O. 
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Suppose 4> has no root in C. Then the complex function 1/4> is analytic in 
the whole complex plane. It follows from Cauchy's theorem that the integral 
of 1/4> along any path in the plane depends only upon the endpoints of the 
path. In particular, the integral of 1/4> around the upper half Cr) of the circle 
Izl = R in a clockwise direction equals the integral of 1/4> along the real axis 
from -R to R. 

- R o +R 

Figure 5 

We examine the behavior of these integrals as R grows large. Since 
deg 4> = 2n, we can write 4>Cz) = az2n 

- t/lCz) where a"" ° and t/I is a polynomial 
of degree less than 2n. Consequently, we have 

I 
4>Cz) I > l-It/lCZ)I· 
az 2n - az2n 

Suppose now that t/lCz) = ao + a1z + ... + amzm where m < 2n. Then 

I 
t/lCz) I < laol + la11lzl + ... + lamllzlm 

az2n 
- lallzl 2n 

at least when Izl > 1. It follows that for any e E CO, I), there exists some R, > 1 
such that Izl ~ R, implies I t/lCz)/az2n I ~ e, and also 

We apply this to Sr dz/4>Cz) for R~ R, to get 

Thus, as R grows large, Sr dz/4>(z) grows small in absolute value. 
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Now consider the other integral. Since rjJ has real coefficients, it takes only 
real values along the real axis. Furthermore, rjJ cannot change sign along the 
real axis-to do so it would have to vanish somewhere, contrary to the hypo­
thesis that rjJ has no roots. It follows that the integral of IN along the x axis, 
which can be expressed as 

can only increase in absolute value as R grows. Of course this behavior is 
completely opposite to that of the integral around r and provides the con­
tradiction which establishes the theorem. 

Corollary. A polynomialf of degree n over C has n roots in C andfactors as 

fx = c(x - C<I)(X - C(2) ... (x - C<n), 

where C<I' C<2, ... , C<n are the roots off and c E C*. 

Proof. By the theorem,fhas a root C<I E C. Thenfx = (x - C(1)(gx) where 
g is a polynomial of degree n - 1. Again, g has a root C<2 E C and gx = 

(x - C(2)(hx), and so forth. 

N.B. The roots C<I, C<2, ... , C<n need not be distinct. A number which occurs 
more than once in the list of roots is called a repeated or multiple root. Those 
which occur once are called simple roots. 

The fundamental theorem of algebra was stated first in 1746 by the French­
man Jean-le-Rond D'Alembert (1717-1783), who gave an incomplete proof. 
The first true proof was given by Karl Friedrich Gauss (1777-1855) in 1799. 
Gauss gave, in all, four distinct proofs of this theorem. 

A field with the property that every polynomial over it splits into linear 
factors is said to be algebraically closed. The fundamental theorem may there­
fore be restated as: the field of complex numbers is algebraically closed. It is 
true, but difficult to prove, that every field is contained in an algebraically closed 
field. 

lOla. Show that every polynomial over R of positive degree can be factored 
as a product of polynomials over R with degree 1 or 2. 

101~. A number C< is a root of multipliCity m of a polynomial rjJ over C if 

Show that C< is a root of rjJ of multiplicity m if and only if rjJc< = rjJ'c< = ... = 
rjJ(m-l)c< = 0, but 1>(m)c< =I O. (Here rjJ(k) denotes the k-th derivative of rjJ.) 
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102. A polynomial g over the field F divides a polynomialf over F iff = qg 
for some polynomial q over F. To indicate that g dividesf, we write g If, and 
to indicate that it does not, g { f. A polynomial is always divisible by itself and 
by every polynomial of degree O. 

A polynomial f over F of positive degree which can be factored as f = gh 
where g and h are polynomials over F of positive degree is called reducible over 
F; a polynomial of positive degree which cannot be thus factored is called 
irreducible over F. (We shall not apply either term to polynomials of degree 
zero.) Every polynomial of degree I is irreducible. In general there are many 
irreducible polynomials of higher degrees over a field. As we shall see, irre­
ducible polynomials are like prime numbers. 

Proposition. A polynomial f, irreducible over the field F, has a root in F if and 
only if degf = I. 

Proof. If degf= I, thenfx = Co + c!x andfhas -colc! as root in F. On 
the other hand, if f has a root (J. E F, then fx = (x - (J.)(qx) for some poly­
nomial q over F. Since f is irreducible, it must be that deg q = 0 and, con­
sequently, degf = I. 

Corollary. The only irreducible polynomials over the field of complex numbers 
C are those of degree I. 

As an example we note that the polynomial x 2 + lover the field of rational 
numbers Q is irreducible, but considered as a polynomial over C it is reducible: 
x 2 + 1 = (x - i)(x + i). 
102a. Show that a polynomial irreducible over R has degree 1 or 2. 

102p. Show that every polynomial of positive degree over a field F is divisible 
by a polynomial irreducible over F. 

102y. Show that there are an infinite number of irreducible polynomials over 
any field. 

1020. Compute the number of irreducible polynomials of degrees I, 2, and 3 
over Zp. 

102E. Determine all of the monic polynomials (that is, polynomials with 
leading coefficient I) of degrees 2 and 3 which are irreducible over Z3' 

102~. Show that the polynomialf over a field is irreducible if and only if the 
polynomial g defined by gx = f(x + a) is irreducible over the same field. 

10211. Show that 4x:' - 3x - 1/2 is irreducible over Q. 

1029. An integer m is called a quadratic residue mod p if and only if the con­
gruence x 2 ;: m mod p has a solution, or what is the same thing, if and only if 
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the polynomial x 2 - [m]p has a root in the field Zp. Count the number of 
elements [m]p E Zp for which x 2 - [m]p has a root in Zp. 

102l. Show that x 2 - a has a root in Zp (p > 2) if and only if a(p+l)/2 = a. 

102K. Determine conditions on a and b for which the quadratic equation 
x 2 + ax + b = 0 is solvable in Zp. 

103. A greatest common divisor of two polynomials of positive degree over 
the field F is a polynomial of maximal degree over F dividing both. That is, 
d is a greatest common divisor of I and 9 if dll and dl g, but deg h > deg d 
implies either h,r lor h,r g. For a rather trivial reason, there is more than one 
polynomial which satisfies these requirements: if d is a greatest common 
divisor 011 and 9 over F and c E F*, then the polynomial cd (given by (cd)x = 
c(dx)) is also a greatest common divisor. We shall let (I, g) denote the set of 
polynomials which are greatest common divisors of land 9 over F. Outside of 
this aspect of the situation, the notion of greatest common divisor for poly­
nomials is similar to that for integers (23). 

Theorem. II I and 9 are polynomials 01 positive degree over F and dE (f, g), 
then there exist polynomials u and v over F such that 

d= ul + vg. 

Proof. Let a denote the set of polynomials of the form sl + tg over F. Let 

b = {n E N I n = deg h, hE a, h f= O}. 

The set b contains deg I and deg 9 and therefore has a smallest element 
m = deg d', where d' = u,! + v'g E a for some polynomials u' and v' over F. 
We must have d' I h for all hE a. Otherwise, for some h, h = qd' + r where 
deg r < deg d', and if h = sl + tg, we have 

r = h - qd' = (s - qu')1 + (t - qv')g 

so that rEa, contradicting the minimality of deg d' in b. Thus, d' divides every 
element of a-in particular d' Iland d' Ig. Therefore, deg d' ~ deg d. On the 
other hand, d II and dig so that d divides d' = u,! + v'g and deg d ~ deg d'. 
Consequently, deg d = deg d'. However, dl d' implies d' = cd where c E F. 
Setting u = u'Jc and v = v'Jc, we have d = d'Jc = ul + vg. 

Corollary. If d, d' E (f, g), then d' = cdlor some nonzero c E F. 

Corollary. II f, g, and h are polynomials over the field F, if I is irreducible over 
F, and if I divides gh, then I divides g, or I divides h (or both). 
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Proof. If f ~ g, then I E (f, g) and by the theorem there exist polynomials 
u and v over F such that I = uf + vg. Then h = ufh + vgh, and therefore fl h. 

1031X. Formulate and prove for polynomials over a field F an analogue of 
the euclidean algorithm. (See 23~.) 

103p. Let F[x] denote the set of polynomials in x over the field F .• Given a 
polynomial q E F[x], we define an equivalence relation on F[x], called con­
gruence modulo q, by f == g mod q if and only if q I (f - g). We shall denote the 
equivalence class offE F[x] under this relation by [f]q and the quotient set of 
F[x] by F[x]/(q). Show that the operations of addition and multiplication 
defined on F[x]/(q) by 

[flq + [g]q = [f + g]q [f]q[g]q = [fg]q 

are well defined. Prove that they define a field structure on F [x]/(q) if and only 
if q is irreducible over F. 

103y. Let q be a polynomial irreducible over the field F and let E denote the 
field F[x]/(q) (103P). Show how E may be viewed as an extension of F, and 
show that [E: F] = deg q. Show that q, considered as a polynomial over E, has 
a root in E. 

1030. Show that the field R[x]/(x2 + I) is isomorphic to the field of com­
plex numbers C. 

103£. Show that the field Q[x]/(x2 
- 2) is isomorphic to the field Q(JZ). 

103~. Deduce Kronecker's theorem: For every polynomial f over a field F 
there exists an extension field E of finite degree over F in which f splits. (Use 
102P, 103P, and 103y.) 

Leopold Kronecker (1823-1891) is renowned for his work in quadratic 
forms and ideal theory. He is also famous for his remark, "Die ganzen 
Zahlen hat der liebe Gott gemacht, alles anderes ist Menschenwerk." (" The 
whole numbers God has made, all else is man's doing.") 

10311. Construct a field with p2 elements where p is a prime, p > 2. 

1039. Prove that over a field of characteristic p (p "# 0) the polynomial 
xP - I'J. is irreducible or splits. 

104. Unique Factorization Theorem for Polynomials. Every polynomial over 
a field can be factored as a product of irreducible polynomials in a way 
which is unique except for the order and multiplication of factors by constants. 

We shall omit the proof of this theorem, which is entirely similar to the 
proof of the fundamental theorem of arithmetic (24) and which is a special 
case of the proof of unique factorization in euclidean domains to be given 
later (172). 
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How a polynomial is factored as a product of irreducible polynomials 
depends of course upon the field with which it is associated. For example, 
X4 + I is irreducible over Q and has no proper factorization over Q. However, 

over Q(J 2) (88P) we have 

X4 + I = (X2 + fix + 1)(x2 - J2x + I), 

while over Q(i) (881) we have 

X4 + I = (X2 + i)(x2 - i). 

Furthermore, a polynomial over a field may be factored in several ways. For 
example, over Q we have 

105. Let / be a polynomial over the field Q of rational numbers given by 
/x = Co + CIX + ... + cnX'. We shall call/primitive if 

(I) /i= 0, 
(2) the coefficients Co, CI , •.• , Cn are all integers, 
(3) the greatest common divisor of Co, CI , ... , Cn is I. 

Proposition. 
nomial. 

The product 0/ primitive polynomials is again a primitive poly-

/ 

Proof. Let 9 and h be primitive polynomials given by 

and 

hx = bo + blx+'" + bsx'. 

Suppose there is a prime p dividing all the coefficients of gh. Since 9 is primi­
tive, p cannot divide all the coefficients of g. Let a i be the first coefficient of 9 
not divisible by p. Similarly, let b j be the first coefficient of h not divisible by p. 
The coefficient of Xi + j in the polynomial gh is given by 

Sincep divides ao, ai' ... , ai-I and bo , bl , ... , bj _ l , every term to the left 
and right of ai bj is divisible by p . By hypothesis p divides the whole expression, 
and it follows thatp divides aibj . However, pJaibj impliespJai or pJbj , 

which is a contradiction. Thus, no prime divides all the coefficients of gh. In 
other words, the coefficients of gh have greatest common divisor I. 



86 3 Field Theory 

106. Proposition. Every nonzero polynomial/over the field Q 0/ rational 
numbers can be written uniquely as / = cJ where CEQ, c> 0, and J is a 
primitive polynomial. 

The positive rational number c is called the content off, and the polynomial 
J is called the primitive form off 

Proof Clearly, / = a/' where a E Q, a> 0, and /' is a polynomial with 
integral coefficients. LetJbe the polynomial obtained from/, by dividing each 
coefficient by the number bEN, which is the greatest common divisor of them 
all. Then/ = cJ where c = abo 

Suppose/can be written in two ways:/= cJ= dg whereJand 9 are primi­
tive. Let c = plq and d = rls where p, q, r, sEN. Then sPJ = qrg is a poly­
nomial with integral coefficients having greatest common divisor sp = qr. It 
follows that c = plq = rls = d and, consequently, that J = g. 

Corollary. A nonzero polynomial with integral coefficients is reducible over 
Q if and only if it factors as a product 0/ two polynomials with integral 
coefficients 0/ positive degree. 

Proof. Suppose / is a polynomial over Z which is reducible over Q, say 
/ = gh. Let g = ag and h = bli be the factorizations of g and h guaranteed by 
the proposition. Then / = (ab)gli is a factorization of/since gli is primitive. 
Therefore, ab is the content of / anq therefore an integer. We have / = 
((ab)g)li, the required factorization. The argument in the other direction is 
trivial. 

This corollary is called Gauss's lemma because it is given in article 42 of his 
famous Disquisitiones Arithmeticae of 1801. The proposition of 105 is also 
called Gauss's lemma by some authors. 

107. The Eisenstein Irreducibility Criterion. Let / be a polynomial over Q 
with integral coefficients, say /x = Co + ctx + ... + cnxn. If there is a 
prime number p such that p divides every coefficient 0/ / except Cn and 
p2 does not divide co, then / is irreducible over Q. 

Proof. Suppose that / is reducible. Then by the corollary of 106, / must 
factor as/ = gh where g and h are polynomials of positive degree with integer 
coefficients. Let g and h be given by 

and 

hx = bo + btx + ... + bsxs, r + s = n. 
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The coefficients are related by the equations 

Co = aobo, 

cI = aobl + albo, 

C" = aob" + alb"_1 + ... + a"bo . 

By hypothesis, p I Co and therefore p I ao or p I bo , but not both since p2 {' co. 
Without loss of generality, we may assume that p I ao and p {' bo . Now p I CI 

and p I ao imply pial bo; since p {' bo , it follows that pial' Continuing in this 
fashion, we obtain pi ao , pial' ... , p I a, . Thus, p divides every coefficient of g. 
Since I = gh, it follows that p divides every coefficient off But this contra­
dicts the hypothesis that p {' c". Thus, I cannot be reducible, and the proof is 
complete. 

Ferdinand Gotthold' Max Eisenstein (1823-1852) was a student of Gauss 
and continued the work of the master begun in the Disquisitiones Arithmeticae. 
The theorem above appeared in Crelle'sJournalliir Mathematik vol. 39 (1850), 
pp. 160-179. It is sometimes erroneously attributed to Theodor Schonemann 
(1812-1868). 

107a. Prove that there exist a countable number of irreducible polynomials 
of degree n over Q. 
107p. Show that the polynomial <l>px = I + x + ... + x p- t is irreducible 
over Q for p a prime. (Hint: consider gx = <l>p(x + I).) 

1071. By means of the Eisenstein criterion, show that the cubic 4x3 
- 3x 

- 1/2 is irreducible over Q. 

1070. Show that a polynomial of odd degree 2m + lover Z, 

is irreducible if there exists a prime p such that 

(I) P{'C2m + l , 

(2) plcm +1,plcm +2, ... ,plc2m , 
(3) p2 Ico,p2Ic t, ... ,p

2 Ic"" 
(4) p3{'CO' 

(This is a theorem of Eugen Netto (1846-1919) and appears in Mathema­
tische Annalen, vol. 48 (1897).) 

107£. Let 
cfJX = (fox) + (ftx)X + ... + (fnx)X" 

be a polynomial in X over the field F(x) (98a) with coefficients in F[xl. Sup­
pose that x divides 10 X,fl x, ... ,In -I X but not I" x, and that x 2 does not 
divide j~ x, Prove that cfJX is irreducible over F(x). 
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Algebraic Extensions 

lOS. Let E be an extension field of the field F. An element a of E is algebraic 
over F if a is a root of some polynomial with coefficients in F. If every element 
of E is algebraic over F, then E is called an algebraic extension of F. 

As examples we note that)2 and i = ) =-1 are algebraic over Q. Complex 
numbers which are algebraic over the rational field Q are called algebraic 
numbers. There exist complex numbers which are not algebraic (e and n for 
example) and these are called transcendental numbers. 

10SIX. Prove that the sum, c + a, and product, ca, of a rational number c and 
an algebraic number a are algebraic numbers. 

10Sp. Prove that cos(kn) is an algebraic number whenever k is rational. 

109. Let a be an element of the extension field E of the field F, and suppose a 
is algebraic over F. Among all the polynomials over F of which a is a root, let 
Ibe one of lowest degree. Then/is called a minimal polynomial for a over F. 
Minimal polynomials have two important properties. 

Proposition. If I is a minimal polynomial lor a over F, then 

(1) I is irreducible over F, 
(2) I divides any polynomial over F having a as a root. 

Proof. Suppose/is reducible, say 1= gh. Then we havela = (ga)(ha) = 0, 
which implies ga = 0 or ha = O. Both 9 and h have degree less than f, 
contradicting the definition of I as a minimal polynomial for a. Thus, I is 
irreducible. 

Suppose a is a root of a polynomial 9 over F. By the division theorem {ye 
can write g = ql + r. Then we have ga = (qa)(fa) + ra = 0 which implies 
ra = O. If r oF 0, then deg r < deg/. But then r is a polynomial of degree less 
than I with a as a root, contradicting the minimality off. Thus, r = 0 and 
Ilg· 

Corollary. Two minimal polynomials lor a over F differ by a constant lactor. 

1091X. Let I be a polynomial irreducible over F, and let E be an extension 
field of F in which I has a root a. Show that I is a minimal polynomial for a 
over F. 

109p. Let FeE c D be a tower of fields . Let a ED, and let 9 be a minimal 
polynomial for a over E and/a minimal polynomial for a over F. Show that 
9 II (considering both as polynomials over E). 
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109"(. Find minimal polynomials over Q and Q(J2) for the numbers 

.fi + J3 and i.fi = ~. 

110. Let IX be an element of E, an extension field of F. We denote by F(IX) the 
smallest subfield of E containing both F and IX. F(IX) is called the field obtained 
by adjoining IX 10 F. We may also characterize F(IX) as the intersection of all the 
subfields of E which contain IX and F. 

Proposition. If E is an extension field of F and IX E E is algebraic over F, then 
F(IX) is a finite extension of F of degree n where n is the degree of a minimal 
polynomialfor IX over F. Furthermore, the set {J, IX, 1X2, ••• , IX

n
-

1
} is a basis 

for F(IX) over F. 

Proof. Since F(IX) is a field and contains IX, it must contain all the elements 
I, IX, 1X2, ••• , IX" -1 and therefore, as a vector space over F, it must contain every 
linear combination 

with coefficients in F. Let X denote the set of all such linear combinations. It 
is not difficult to see that X is a vector space over F spanned by 

{J, IX, ••• , 1X"-I}. 

Now we assert that {I, IX, ••• , IX
n

-
1

} is linearly independent over F. If 
there were a nontrivial linear relation over F, 

then IX would be a root of the polynomial g over F given by 

However, deg g < n, and by hypothesis n is the degree of a minimal poly­
nomial for IX over F. This contradiction forces the conclusion that 

is linearly independent and hence that it is a basis for X over F. 
The remainder of the proof consists of showing that X is a field. Since X 

contains Fand IX, this implies that F(IX) eX. We already know that Xc F(IX), 
so that we will have X = F(IX). 

Clearly, X is an additive subgroup of E. To show that X is a subfield of E, 
and hence a field, we need only verify that X* = X - {O} is a multiplicative 
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subgroup of E* = E - {o}. Let/be a minimal polynomial for a over F. Sup­
pose that 

and 

are elements of X*. We can write f3 = ga and y = ha for the polynomialsg and 
hover F given by 

and 

By the division theorem we have gh = q/ + r where r = ° or deg r < deg/ = n. 
Since/a = 0, we have 

° =f. f3y = (ga)(ha) = (gh)a = (qf)a + ra = ra. 

Since ra =f. 0, we have r =f. 0, and consequently, deg r < n. Thus, 

Finally, we show that every element of X* has a multiplicative inverse. Let 

as above. By 109, the minimal polynomial/for a over Fis irreducible. There­
fore, 1 E (I, g) the greatest common divisor, and by 103 there exist polyno­
mials u and v over F such that u/ + vg = I. Moreover, we can find u and v 
so that deg v < deg/= n. Since/a = 0, we obtain (va)(ga) = I. Thus, f3- 1 = 
va E X*. 

As an example of this proposition, consider the field Q(O where ( = e2ni
/
p 

for p prime. Now ( is a p-th root of unity, that is, a root of x P - 1, and there­
fore is algebraic over Q. We have the factorization 

where 

It follows that' is a root of <l>p, which is irreducible over Q as we shall see. 
The substitution x = y + 1 yields 



(y+l)p-I 
cI>iy + I) = (y + I) _ 1 
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= yp-l + (p) yp-2 + ... + ( p ) y + ( p ), 
I p-2 p-l 

to which the Eisenstein criterion applies using the prime p. Since cI>p is irre­
ducible, it must be the minimal polynomial for ( over Q. Consequently, 
[Q(O: Ql = p - I and {I, (, e, ... , (p-2} is a basis for Q(O over Q. 

1100[. Let E be an extension field of F, and let a E E be an element algebraic 
over F. Show that F(a) is isomorphic to the field F[xl/(f) whereJis a minimal 
polynomial of a over F. (See 103~.) 

110~. Let a, fJ E E be elements algebraic over the subfield F. It is clear that fJ 
is algebraic over F(a). We denote by F(a, fJ) the subfield of E obtained by ad­
joining fJ to F(a). Show that F(a, fJ) = F(fJ, a). What can be said of the 
degree [F(a, fJ): Fl? 

110y. Let E be an extension field of Fwhich contains all the roots, a l , a2, ... , 
an, of a polynomialJ of degree n. The splitting field of! in E is the smallest sub­
field of E containing F and the roots a l , a2, ... , an. We denote this by 
F(a l , a2, ... , an). Prove that 

[F(a l , a2, ... , an): F] :-:; n!. 

1100. Let E and E' be two extensions of F in which a polynomialJ over F 
splits. Prove that there exists an isomorphism ¢ from the splitting field ofJin 
E to the splitting field of J in E', such that ¢c = c for every c E F. 

110E. Let a E E be an element transcendental (that is, not algebraic) over a 
subfield F. Prove that F(a) is a field isomorphic to F(x), the field of rational 
functions of x over F (980[). 

110~. Prove that two finite fields with the same number of elements are 
isomorphic. 

11011. Let a E E be an element transcendental over the subfield F. What is the 
degree of F(a) over F(a4/4a 3 

- I)? 

111. Proposition. A finite extension is an algebraic extension. 

Proof. Let E be a finite extension of the field F, and suppose that 
[E: F] = n. Let a E E be any element. The set of n + I elements 

{l, a, a2, . . . , an} 



92 3 Field Theory 

must be linearly dependent. Therefore, there are elements co, c,' . . . , Cn E F, 
not all zero, such that 

Thus, IX is a root of a polynomial over F and is algebraic. 

Corollary. If IX is algebraic over F, then F(IX) is an algebraic extension of F. 

Corollary. If F = Fo c F, c ... C Fk is a tower of fields, all contained 
within an extension E of F, such that for i > 0, Fi = Fi _, (IX;) where IX i is 
algebraic over Fi _" then Fk is algebraic over F. 

Proof. Each Fi is a finite extension of Fi-,. By 97 we have that Fk is a 
finite extension of Fo = F, and hence algebraic. 

112. Proposition. If E is an algebraic extension of F and D is an algebraic 
extension of E, then D is an algebraic extension of F. 

Proof. Let fJ be an element of D, and suppose fJ is a root of the poly­
nomial g with coefficients IXo, IX" ... , IXn ' Consider tp.e tower of fields 

where 

Since the last field F(IXo, IX" . .. , IXn) contains all the coefficients of g, fJ is 
algebraic over it, and we may add to the tower 

By the second corollary of 111, the field F(IXo , IX" .. . , IXn , fJ) and, consequently, 
the element fJ are algebraic over F. 

(If IXo, IX" .. . , IXn are elements of a field E algebraic over a subfield F, we 
shall denote by F(IXo , IX" ... , IXn) the smallest subfield of E containing F and 
ao, al , .. . , an·) 

1120!. Prove that the set of all algebraic numbers is a subfield of C. Show that 
the set of all algebraic numbers is countable. (Since C is not countable, this 
proves existence of transcendental numbers.) 

112~. Prove that if IX and fJ are transcendental numbers, then either IX + fJ or 
IXfJ is transcendental. 
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1121. Let ¢ be a polynomial over Q. Show that ¢rx = n implies that rx is 
transcendental. 

113. Proposition. Every irreducible polynomial over a number field has 
distinct roots. 

Prool Let/be an irreducible polynomial over a number field F given by 

/X = Co + CIX + ... + cnxn. 

Suppose / has a multiple root rx. Then over C we can write 

where rx l , rx2, ... , rxn - rn are the remaining roots of/ (distinct or not). Taking 
derivatives on both sides shows that!' is a polynomial over F with rx as a root. 
(Indeed, we have!'x=cI+2c2x+···+ncnxn-1 is divisible in C by 
(x - rx)m-I.) This shows that / is not a minimal polynomial of rx. By 109 a 
minimal polynomial of rx divides f, contradicting irreducibility. Thus,f must 
have distinct roots. 

113a. A polynomial/ over a field F is separable if/ and its formal derivative 
(100CL) have the constant polynomial I as a greatest common divisor. Prove 
the following statement: if/is a polynomial over F which splits in the extension 
field E, then / is separable if and only if the roots all in E are distinct. (This 
explains the terminology.) 

Remark. We have departed from the accepted definition of a separable 
polynomial as one with distinct roots in a splitting field. To make sense, 
such a definition requires existence and uniqueness of splitting fields, which 
we have not developed in the text. (103P takes care of existence. See 110/) for 
uniqueness.) The above definition emphasizes separability as a property of the 
polynomial and suggests immediately a test for separability of a given poly­
nomial (103a). 

113p. Show that an irreducible polynomial is separable if and only if its 
formal derivative is nonzero and that consequently an irreducible polynomial 
over a field of characteristic 0 is always separable. (How is this result related 
to the proposition of 113?) 

1131. A field F of nonzero characteristic pis per/ectif every elementrx E Fhas 
a p-th root in F, or equivalently, if x P - rx has a root in F. (By convention a 
field of characteristic 0 is always perfect.) Prove that a field with a finite 
number of elements is perfect. 
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1130. Prove that over a perfect field of nonzero characteristic, an irreducible 
polynomial is separable. 

113E. An element a in an extension E of a field F is separable over F if it is a 
root of a polynomial separable over F. (It follows then that the minimal poly­
nomial of a is separable. Why?) A separable extension is one in which every 
element is separable. Prove that every algebraic extension of a perfect field is 
separable. 

113~. Prove that an imperfect field has an inseparable algebraic extension. 

Together 113E and 113~ show that a field is perfect if and only if each of its 
algebraic extensions is separable. In fact many authors take this as the 
defining property of perfect fields. 

1131'). Prove that every algebraic extension of a perfect field is perfect. 

1139 .. Show that an element a of an extension E of a field F with nonzero 
characteristic p is separable over F if and only if F(aP) = F(a). 

113t. Let F be a field of nonzero characteristic p, and let E be a finite algeb­
raic extension of F. We denote by E(p) the smallest subfield of E containing F 
and the p-th power aP of every element a E E. (How do we know such a field 
exists?) Prove that E is a separable extension of F if and only if E(p) = E. 

113K. For a E E, an extension field of F, prove that F(a) is a separable exten­
sion of F if and only if a is separable over F. 

1131... Prove that if E is a separable extension of F, and if D is a separable 
extension of E, then D is a separable extension of F. 

113/l. Let E be an extension field of F. Prove that the set K of all elements of 
E which are separable over F is a field. (K is called the separable closure of 
F in E.) 

114. Theorem. Let F be a number field, and suppose that a, fJ E C are alge­
braic over F. Then there exists a number y E C algebraic over F, such that 
F(a, fJ) = F(y). 

Proof. Letfbe a minimal polynomial for a over F and g a minimal poly-
nomial for fJ over F. Let a = a l and a2, a3, . . . , an be the roots off, which by 
113 are distinct , and let fJ = fJI and fJ2, fJ3, ... , fJm be the roots of g-also 
distinct. Choose a nonzero element c E F distinct from all the numbers 

(a
l 

_ a;) r ~ 

(fJI - fJi f'>. t>o J 
for i = 2, 3, . . . , n and j = 2, 3, . .. , m . We set y = a + cfJ. Then y E F(a, fJ) 
and is therefore algebraic over F. Consequently, we have F(y) c F(a, fJ). 
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Furthermore, l' = rx i + efJj only for i = j = I. Now consider the polynomial 
hover F(1') given by hx = f(1' - ex). The element fJ = fJI is a root of h since 

hfJ = f(1' - efJ) = frx = 0, 

but none of the other elements, fJ2, fJ3' ... , fJm, is a root of h. Let iJ be a 
minimal polynomial for fJ over F(1'). By 109 we must have iJ I hand iJ I g. This 
implies that every root of iJ is a root of h and of g. However, g and h have in 
common only the root fJ. Hence, iJ = a(x - fJ) where a E F(1'). Consequently, 
fJ E F(1'), and therefore rx = l' - cfJ E F(1'). Thus, F(rx, fJ) c F(1'), which implies 
F(rx, fJ) = F(1'). 

An extension of the form F(1') of a field F is called a simple extension of F. 

Corollary. If Fo c FI C ••. c Fn is a tower of number fields, each of which is a 
simple extension of its predecessor, then Fn is a simple extension of Fo. 

Proof. By 111, Fn is algebraic over Fo . Let rx I, rx 2 , : .• , rxn be elements such 
that Fi = Fi-l(rxJ Each rxi is algebraic over Fo and Fn = Fo(rx l , rx 2 , ••• , rxn). 
Repeated application of the theorem yields Fn = Fo(1') for some l' E C. 

114a. Prove that every finite separable extension of a field F is a simple 
extension, that is, has the form F(1'). (For a field F with an infinite number of 
elements, modify the proof above. When F is finite, use 100.) 

If E = F(1'), then l' is called a primitive element of E because l' generates E 
over F. The statement of 1140! is generally known as the primitive element 
theorem. 

114p. Find a primitive element over Q for each of the fields Q(J2, )3), 
Q(i, J2), and Q(J3, 2e2ni/3

). 

Constructions with 
Straightedge and Compass 

115. We shall determine which figures of plane geometry can be constructed 
with straightedge and compass alone. In doing so it is convenient to identify 
points of the plane with complex numbers: the coordinate point (a, b) cor­
responds to the complex number a + bi. The plane figures constructible with 
straightedge and compass are determined by the following criteria: 
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(0) The points (0,0) and (1,0) are constructible. (Any two points of the 
plane may be chosen for (0,0) and (I, 0) and the distance between them 
taken as the unit length.) 

(1) The line (or line segment) determined by two constructible points is 
constructible. 

(2) A circle with a constructible point as center and a constructible length as 
radius is constructible. (A constructible length is the distance between 
two constructible points.) 

(3) The intersection of two constructible lines is a constructible point. 
(4) The points (or point) of intersection of a constructible line and a con­

structible circle are constructible. 
(5) The points (or point) of intersection of two constructible circles are 

constructible. 

Remarks. We shall call (0)-(5) the axioms of constructibility. Once they 
have been stated, the' problem of constructibility with straightedge and com­
pass is removed from the domain of mechanical drawing to the domain of 
mathematics. Axiom 1 indicates the only way the straightedge may be used: 
to draw the line between two previously constructed points. Axiom 2 indicates 
how the compass is used: the feet may be placed on two constructed points to 
determine a radius and then the compass transported to a third constructed 
point as center and the circle drawn. Axioms 3, 4, and 5 indicate the ways in 
which new points are constructed. A warning to the reader may prevent mis­
interpretation: lines and circles are not to be considered as "made up" of 
points; that a line or circle is constructible dtJes not imply that all points on the 
line or circle are constructible. Furthermore, we do not allow the choice of 
arbitrary points on or off lines or circles. 

116. Proposition. The line parallel to a given constructible line and passing 

k ______ A __ --------~-------------------

B D 

Figure 6 

through a given constructible point (not on (he given line) is constructible. 
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Proof. Let A be a constructible point and I a constructible line not passing 
through A. Let Band C be constructible points which determine I. The circle 
with center A and radius AC is constructible. The circle with center C and 
radius AC is also constructible and so are its intersections with the line I. 
Let D be one of these .intersections. The circle with center D and radius 
CD = AC is constructible and intersects the circle with center A and radius 
AC in the points C and E. Thus, the point E is constructible. Finally, the 
line k determined by A and E is constructible and is parallel to I. 

117. Proposition. The perpendicular bisector of a constructible line segment 

Figure 7 

is a constructible line. 

Proof. Let A and B be constructible points. The circles centered at A and 
B with radius AB are constructible and so are their intersection points C and 
D. The line determined by C and D is constructible and is the perpendicular 
bisector of AB. 

118. Proposition. The circle determined by three constructible points (not 

Figure 8 

lying in a line) is constructible. 
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Proof. Let A, B, and C be three constructible points which do not lie on a 
line. By 117, the perpendicular bisectors k and I of the line segments AB and 
AC are constructible. Consequently, their point of intersection is a con­
s.tructible point O. The circle with center 0 and radius AO = BO = CO is 
constructible and passes through A, B, and C. 

119. We shall call a complex number a + bi constructible, if the corre­
sponding coordinate point (a, b) is constructible with straightedge and compass 
according to the axioms of 115. The complex numbers 0 and I are construct­
ible by axiom O. 

Theorem. The constructible numbers form a field '{j. 

Proof. Since the numbers 0 and I are constructible, the real axis (which 
they determine) is a constructible line. Clearly, the number - I is construct­
ible. The perpendicular bisector of the segment between - I and I is con­
structible, so that the axis of imaginary numbers is a constructible line. 

First, we show that the real numbers which are constructible form a field. 
It is obvious that if a and b are constructible real numbers, then a + band 
- a are constructible. Suppose that a and b are constructible, positive real 
numbers. Then the numbers ai = (0, a) and - bi = (0, - b) are constructible. 
(Why?) By 118 the circle through (-1,0), (0, a), and (0, -b) is constructible. 

c = ( - 1,0) D = (ab,O) 

B = (0, - b) 

Figure 9 

This circle intersects the real axis in a constructible point D. AB and CD are 
chords of the circle intersecting at the origin O. By a theorem of elementary 
geometry (AO)(OB) = (CO)(OD). It follows that OD = ab and D = (ab, 0). 
Thus, ab is constructible. In a similar manner, I/a is constructible as shown in 
Figure 10. 
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(0, \) 

( - a, O) o (\ /a, 0) 

(0, -I) 

Figure 10 

This completes showing that the constructible real numbers form a field. 

It is clear that the complex number a + bi is constructible if and only if the 
real numbers a and b are constructible. (We need to use 116 here.) It follows 

I 
I 

(0, b) I (a, b) 
-----------t'---

I 
I 
I 
I 
I 

o I(~~ 

Figure 11 

immediately from this observation that when a + bi and e + di are construct­
ible complex numbers, the numbers 

and 

(a + bi) + (e + di) = (a + e) + (b + d)i, 

-(a + bi) = (-a) + (-b)i 

(a + bi)(e + dO = (ae - bd) + (ad + be)i, 

a + bi 

are also constructible. 
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120. A constructible number field is a number field all of whose elements are 
constructible numbers. In others words, a constructible number field is 
nothing more nor less than a subfield of Cfi, the field of all constructible 
numbers. Since Cfi is a number field, Cfi contains Q as a subfield; therefore Q is 
constructible. Furthermore, if 1)(1' 1)(2' ... , I)(n are constructible numbers, then 
Q(I)(I' 1)(2, ... , I)(n) C Cfi and is a constructible number field. 

Theorem. If a constructible number field E is a finite extension of Q, then 
[E: Q] = 2', where r is a nonnegative integer. 

Proof. First, we shall show that it is sufficient to prove the statement for 
constructible fields of real numbers. Since E is a finite extension of Q, we have 
E = Q(e) for some e E C by 114. Of course the number e is constructible since 
e E E, and if e = a + bi, then a and b are constructible real numbers. Conse­
quently, the field F = Q(a, b) is constructible. Furthermore, F is a finite 
extension of Q since F(i)= Q(e, 8, i) is a finite extension of Q. (8 = a - bi is 
algebraic over Q because e is.) If [F: Q] = 25

, we have 

[F(i): E][E: QJ = [F(i): QJ = [F(i): F][F: Q] = 25 +1 

from which it follows that [E: Q] = 2' where r ~ s + I. 
Beginning with the field Q, we can construct any point with coordinates in 

Q, and consequently, we can construct any line ax + by + c = 0 or any circle 
(x - p)2 + (y - q)2 = r2, where a, b, c, p, q, r E Q. (We shall call these the 
points, lines, and circles of Q.) The only way we can obtain points whose 
coordinates do not lie in Q is by the intersections of lines and circles of Q. 
Two lines of Q will intersect in a point of Q if they are not parallel. However, 
the points of intersection of a line of Q and a circle of Q, or the points of 
intersection of two circles of Q will, in general, have coordinates in a quad­

raticextension Q(~) where I)( E Q, and I)( > O. (The reader should verify this 
for himself.) 

Clearly, the same reasoning applies to any field F of real numbers: the 
points of intersection of lines and circles of F have coordinates in some quadratic 

extension F();) where I)( E F and I)( > O. (Note that I)( depends upon the parti­
cular lines and circles being intersected and will vary from one instance to 
another.) 

Now it is clear that beginning with Q and using only the methods of con­
struction prescribed by the axioms of 115, we can reach only points which have 
coordinates in some tower 

Q = Fo C FI C .•• c Fn 
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Suppose now that F is a constructible field of real numbers and a finite 
extension ofQ. By 114, F = Q(~) where ~ is a constructible real number. Now 
~ must lie in a tower 

of the type described above. Since ~ E F", F = Q(~) c F". Now 

[F": F](F: QJ = [F": QJ = 2", 

from which it follows that [F: QJ = 2s for some s. 

120ot. Let F be a constructible number field and E an extension field of 
degree 2 over F. Prove that E is constructible. (This will be used in 135.) 

121. Trisection of Angles. As a first application of the preceding theory, we 
shall demonstrate the impossibility of a general construction which trisects 
an arbitrary angle using only a straightedge and compass as prescribed in 
the axioms of constructibility (115). 

First let us show how angles may be trisected easily if we allow an incorrect 
usage of the straightedge. (Apparently this practical construction was known 
to ancient geometers.) 

D 

Figure 12 

We assume that an angle IX is given. With the compass set at a given length r, 
a circle is described with the vertex of IX as center, so that the sides cut the 
circle at points A and B. Now this same given length r is marked on the 
straightedge. The straightedge is positioned so that the points marking the 
distance r fall upon the line OA and the circle (at C and D) and so that the 
line they determine passes through B. Since OBC and OCD are isosceles 
triangles, we have 

IX = LAOB = LODB + LOBD 

= LODC+ L OCB 

= LODC+ LODC+ LCOD 

=3LODC. 
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To demonstrate the general impossibility of trisecting angles with straight­
edge and compass, it is sufficient to exhibit one angle for which trisection is 
impossible. We choose 600

• 

First, we observe that an angle ex is constructible if and only if the real 
number cos ex is constructible. Thus, we have only to show that cos 200 is not 

Figure 13 

constructible. For any angle e, we have cos 3e = 4 cos3 e - 3 cos e. Since 
cos 600 = 1/2, it happens that cos 200 is a solution of the equation 4x 3 

- 3x = 

1/2, or what is the same thing, a root of the polynomial 8x 3 
- 6x - 1. 

The polynomial 8x 3 
- 6x - I is irreducible over Q: the substitution 

x = 1(y + I) yields y3 - 3y2 - 3, which is clearly irreducible by the Eisenstein 
criterion (107); were 8x 3 

- 6x + I reducible over Q, the same substitution 
applied to its factors would yield a factorization of y3 - 3y2 - 3. 

Now it follows that 8x3 
- 6x - 1 is a minimal polynomial for cos 200 over 

Q and that [Q(cos 200
): QJ = 3. By 120 we are forced to conclude that 

Q(cos 200
) is not a constructible number field and that cos 200 is not a con­

structible number. Thus, the angle 200 cannot be constructed. 
There are four famous problems of antiquity concerned with straightedge 

and compass constructions. One is the trisectability of angles, which we have 
just disposed of. Another is the constructibility of regular polygons, which we 
shall take up in articles 135- 138. A third is the squaring of the circle, that is, 
the problem of constructing a square with area equal to that of a given circle. 

Algebraically this is equivalent to the constructibility of the number J;, 
which is clearly impossible once it has been proved that IT. is transcendental. 

The fourth problem is the duplication of the cube. The legend is that the 
citizens of Delos inquired of the oracle at Delphi what could be done to end 
the terrible plague decimating their city and received the answer, " Double 
the size of the altar of Apollo." They replaced the cubical altar with anewone 
whose sides were twice the length of the sides of the original, but still the 
plague reigned . A second consultation of the oracle revealed that the require­
ment was to double the volume of the original altar. Of course this is 

equivalent to the problem of constructing Z,/2, which is not possible with 

straightedge and compass because the minimal polynomial for Z,/2 over the 

rational field Q is x 3 
- 2, and [Q(Z,/2): QJ = 3. 
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Chapter 4 
The Galois theory of equations is one of the most beautiful parts of mathe­

matics and one of the roots of modern algebra. The basic idea of Galois 
theory is that for a given field, every extension field of a certain kind has 
associated with it a group, whose structure reveals information about the 
extension. In particular, splitting fields of polynomials have this property, and 
solvability of the associated group determines solvability of the polynomial in 
radicals. Consequently, to prove that equations of the fifth degree are not 
always solvable in radicals (over the rational field Q), we have only to find a 
polynomial equation whose splitting field is associated with the symmetric 
group Ss , which we know is not a solvable group. 

This elegant theory is the work of the tormented genius, Evariste Galois 
(1811 - 1832), whose brief life is the most tragic episode in the history of 
mathematics. Persecuted by stupid teachers, twice refused admission to the 
Ecole Poly technique, his manuscripts rejected, or even worse, lost by the 
learned societies, Galois in bitterness immersed himself in the radical politics 
of the revolution of 1830 al}d was imprisoned. Upon his release he got involved 
in a duel and was fatally wounded , dying before his twenty-first birthday. 
His manuscripts, hastily scribbled in prison and on the eve of his duel, did not 
receive the attention they deserved until they were read by Liouville in 1846. 
Only in 1962 was the critical edition of all Galois's writings finally published, 
but his reputation as a genius of incredible power has been secure for over a 
hundred years. 

103 



104 " Galois Theory 

Automorphisms 

122. An automorphism of a field E is a one-to-one onto mapping, ¢: E -+ E, 
which preserves addition and multiplication, that is, 

¢(a + {3) = ¢a + ¢{3 and ¢(a{3) = (¢a)(¢{3). 

In other words, ¢ is an automorphism of the additive group structure and ¢*, 
the restriction of ¢ to E*, is an automorphism of the multiplicative group 
structure. 

If ¢ and i/J are automorphisms of the field E, then so is their composition 
¢i/J. The inverse of an automorphism is again an automorphism. It is easy to 
see that the set of automorphisms of a field E is a group, which we denote 
C§(E). 

Of course the identity mapping 1 E is an automorphism of the field E, and it 
is the identity element of the group C§(E). 

Whenever we speak of a group of automorphisms of a field E, we shall 
understand that the group product is composition of automorphisms. In other 
words, the term "group of automorphisms of E" is synonymous with 
"subgroup of C§(E)." 

122a. Show that the groups of automorphisms C§(Q) and C§(Zp) are trivial 
groups. 

122p. Determine the group of automorphisms of a field with four elements. 

122y. Determine the group of automorphisms of Q(i) and Q(J2). 

1220. Prove that the group of automorphisms of Q(() where ,= ehi
/
p

, 

p prime, is isomorphic to Z~ . 

1221:. Let ¢ be an automorphism of a field E. Prove that the set 

F = {a EEl ¢a = a} 

is a subfield of E. 

122~. Let E be a finite field of characteristic p. Show that the mapping 
¢: E -+ E given by ¢a = aP is an automorphism. Under what conditions is ¢ 
an automorphism when E is infinite? 

1221]. Let E = F(a) and suppose that {3 is a root in E of a minimal poly­
nomial of a over F. Show that there is a unique automorphism ¢: E -+ E, such. 
that ¢a = {3 and ¢c = c for c E F. 

123. Let ¢ be an automorphism of the field E. We say that ¢ leaves fixed an 
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element a E E if 4Ja = a. We say that 4J leaves fixed a subset X of E if 4Ja = a 
for all a E X. The set 

clearly forms a subfield of E, which we call the fixed field of 4J. The fixed field 
of 4J is the largest field left fixed by 4J. 

If 4Jl, 4J2, ... , 4Jn are automorphisms of E, then the set 

is called the fixed field of 4Jl, 4J2, ... , 4Jn· 

As an example, let 4J: Q(j2) -> Q(j2) be the automorphism given by 

4J(a + bj2) = a - bj2, 

where a, bE Q. Then the fixed field of 4J is just Q. 
For any subset X of a field E the automorphisms of E which leave fixed the 

set X form a group which we denote ,,#(E, X). 

1230(. Let ( = e2ni/5, and let ¢ denote the automorphism of Q(O given by 

¢( = (4. Prove that the fixed field of 4J is Q(JS). 
123p. Let ¢ be an automorphism of a field E leaving fixed the subfield F. 
Show that a E E and a root of I E F [x] implies ¢a is also a root off 

1231. Let ¢ be an automorphism of a field E with fixed field F. Show that ¢ 
extends uniquely to a mapping 

(fi: E[x]->E[x] 

with the following properties: 

(1) (fie = ¢e for any constant polynomial e, 
(2) (fix = x, 
(3) (fi(f + g) = (If>.f) + «fig), 
(4) (fi(fg) = «fil)«fig). 

Furthermore, show that (fil = I if and only if I E F [x]. 

1230. Let ¢ be an automorphism of a field E with fixed field F. Suppose that 
IE E [x] is monic and splits in E. Prove that ifla = 0 al~ays implies/(4Ja) = 0 
for ex E E, then/E F[x]. 

123£. Let E be the splitting field in C of the polynomial X4 + I. Find auto­

morphisms of E which have fixed fields Q(J -2), Q(j2), and Q(i). Is there 
an automorphism of E whose fixed field is Q? 
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124. A finite set of automorphisms of a field E, {¢I' ¢2, ... , ¢n}, is called 
linearly dependent over E if there are elements of E, CI , C2, ••• , Cn E E, not all 
zero, such that 

for all elements a. Otherwise {¢I' ¢2, ... , ¢n} is called linearly independent. 
(Although these definitions are made by analogy with the situation for vector 
spaces, this analogy is formal and the automorphisms ¢I' ¢2' ... , ¢n should 
not be viewed as elements of a vector space.) 

Proposition. If ¢I, ¢2' ... , ¢n are distinct automorphisms of E, then the set 
{¢l> ¢2, ... , ¢n} is linearly independent over E. 

Proof. Suppose {¢l' ¢2, ... , ¢n} is linearly dependent over E. Among all 
the relations of linear dependence involving the ¢;'s, there is a shortest one 
(that is, one with the fewest nonzero coefficients). Renumbering if necessary, 
we may assume that such a shortest relation has the form 

(I) 

for all a E E, where r :::; n, and C1 , C2 , ... , Cr are nonzero (the zero coefficients 
have been deleted). Choose an element [3 E E such that ¢1[3 # ¢r [3. (The ¢;'s 
are distinct by hypothesis.) Now we have 

CI(¢l[3)(¢la) + C2(¢2 [3)(¢2 a) + ... + cr(¢r[3)(¢ra) = 0, (2) 

cI(¢r[3)(¢la) + cz(¢r[3)(¢2a) + ... + cr(¢r[3)(¢ra) = 0, (3) 

for all a E E. Here (2) is obtained by substituting [3a for a in (I) and observing 
that ¢l[3a) = ¢i([3)¢i(a). Equation (3) is the result of mUltiplying (I) by ¢r [3. 
Subtracting (3) from (2) gives the new and shorter relation 

(4) 

for all a where c; = Ci(¢i[3 - ¢r [3). Then c~ = C1 (¢I[3 - ¢r [3) # 0, and relation 
(4) is nontrivial. This is a contradiction, since (I) is the shortest relation, and 
it establishes the linear independence of {¢l, ¢2, ... , ¢n}. 

125. Proposition. If ¢I' ¢2 , ... , ¢n are distinct automorphisms of E, each of 
which leaves fixed the sub field F of E, then [E: Fl ~ n. 

Proof. Suppose [E: F.l = r < n and that {WI' W 2 , ... , w r } is a basis for E 
over F. Consider the system of equations with coefficients in E, 
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Since this system has fewer equations than unknowns, there is a nontrivial 
solution XI = CI , X2 = C2 , ... , Xn = Cn • (That is, not all the c/s are zero.) 
Now we show that this implies that {cPI, cP2, ... , cPn} is linearly dependent­
in fact we show that 

for all C( E E. Since {WI' W 2 , ... , w r } is a basis for E over F, we can write 
any C( E E as 

for unique ai' a2, ... , ar E F. Now we have cPi(a) = aj, and therefore, 

n r 

= I I Ciaj(cPiWj) 
i=1 j=1 

Since cl , c2 , ••• , Cn give a solution of the system (*), it follows that 

n 

I CMiWj) = 0 for j = 1,2, ... , r. 
i= 1 

Thus, I7=1 C;(cPiC() = 0, and {cPI' cP2, ... , cPn} are dependent. Since our hypo­
thesis includes that cPI' cP2, ... , cPn are distinct, this contradicts 124. Con­
sequently, our assumption that [E : FJ < n is incorrect, and therefore, 
[E: F] ~ n. 

N.B. The hypothesis is only that F is left fixed by each cPi, not that F is the 
fixed field of cPI, cP2' ... , cPn· 

126. Proposition. IfF is the fixed field of a finite group G of automorphisms 
of E, then [E: FJ = o(G). 
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Proof. Let G = {cPI' cP2, ... , cPn} and suppose [E: FJ = r > n. Let 
{WI' W2, ... , wr} be a basis for E over F. Consider the system of equations 
over E, 

{

(cPIWI)XI + (cPIW2)X2 + ... + (cPI wr)xr = 0, 
(cP2 WI)XI + (cP2 W2)X2 + ... + (cP2 wr)xr = 0, 

· . . · . . · . . 
(cPnWI)XI + (cPn W2)X2 + ... + (cPn wr)xr = O. 

Since this system has r - n more unknowns than equations, there is a non­
trivial solution XI = CI, X 2 = C2 , •.. , Xr = Cr in which r - n of the c;'s may be 
chosen arbitrarily. For i = I, 2, ... , r let 

We may choose CI , C2 , ... , Cr - n so that ai' a 2 , ... , ar - n are nonzero. (Why 7) 
For i = 1,2, ... , r the elements a j are left fixed by each element of G, and 
consequently, ai' a2, ... , ar E F, the fixed field. Now we have 

since L~= I dcP j 1 wJ = O. This contradicts the linear independence of 
{WI' W2, ... , w r }. It must be that [E: FJ :.,; o(G). On the other hand, we 
know from 125 that [E: FJ2 o(G) = n. Thus [E: FJ = o(G). 

12M. Let E denote the splitting field in C of X4 + lover Q. Prove that 
[E:QJ=4. 

126p. Find a group of automorphisms of Q(O, where ( = e2ni/5, of which 
the fixed field is Q, and determine [Q«): QJ. Howelse can [Q«): QJ be found 7 

126y. Let E denote the splitting field in C of X3 - 2 over Q. Find a group of 
six automorphisms of E with fixed field Q, thereby showing that [E: QJ = 6. 

Galois Extensions 

127. A field E is a Galois extension of F if F is the fixed field of a finite group 
of automorphisms of E, which we call the Galois group of E over F and 
denote C§(E(F). With this definition we may restate succinctly the proposition 
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of 126: the degree of a Galois extension is the order of its Galois group. In other 
words, when E is a Galois extension of F, we have [E: F] = o(<'g(E/F)). It 
follows that the Galois group <'g(E/F) contains every automorphism of E 
which leaves Ffixed: were there one it did not contain , then by 125 we would 
have [E: F] > o(<'g(E/F)), contradicting 126. 

Remark. Some authors use "normal extension" in place of "Galois 
extension." This is unfortunate, since" normal extension" has another more 
generally accepted use. (See 1290(.) 

1270(. Show that an extension of degree 2 is Galois except possibly when the 
characteristic is 2. Can a field of characteristic 2 have a Galois extension of 
degree 2? 

127p. Show that Q((), where ( = eZ
•

i/5
, is a Galois extension of Q. 

1271. Show that Q(Z/2) is not a Galois extension of Q. Find a Galois exten­

sion of Q which contains Q(V2) as a subfield. 

1270. Suppose that E = F(rx) is a Galois extension of F. Show that 

is a minimal polynomial for rx over F, where <PI' <Pz , ... , <P" are the elements of 
<'g(E/F). 

127t:. Let E be a Galois extension of F and suppose that rx E E is an element 
left fixed only by the identity automorphism of E. Prove that E = F(rx). 

128. Proposition. Let <PI> <Pz, ... , <Pn be distinct automorphisms of a field 
E, each leaving fixed the subfield F. /f[E: F] = n, then E is a Galois extension 
of F with group 

<'g(E/F) = {<PI' <Pz, .. . , <Pn}· 

Proof. Since {<PI' <P2 , . . . , <Pn} c <'geE), to show that this set is a group 
under composition we need only verify that it is a subgroup of <'g (E). Suppose 
that a composition <Pi<Pj¢ {<PI' <P2, ... , <Pn}· Then <Pi<Pj in addition to 
<PI' <Pz, ... , <Pn, leaves F fixed, which by 125 implies [E: F] ::::: n + I, a con­
tradiction. A similar contradiction arises if <Pil ¢ {<PI' <Pz, ... , <Pn}. Con­
sequently, {<PI ' <Pz, . .. , <Pn} is a subgroup of <'geE), and hence a group. The 
fixed field F' of {<PI' <Pz , ... , <Pn} contains F and satisfies [E: F'] = n by 126. 
The equation 

[E: F] = [E: F'][F': F] 

yield.s [F' : F] = 1, which means F = F'. This proves the proposition. 



110 4 Galois Theory 

12Sa. Let E be an extension of Zp such that [E: ZpJ = n. Since E* is a 
cyclic group (100) and has a generator e, we know that E = Zp(e). Let 
rP: E -> E be given by rPx = x p

• Prove that I, rP, rP2, ... , rPn 
-1 are distinct auto­

morphisms of E leaving Zp fixed and conclude that E is a Galois extension of 
Zp with cyclic Galois group 

129. Theorem. E is a Galois extension of F if and only if the following con­
ditions hold: 

(1) an irreducible polynomial Ol'er F of degree m with at least one root in E 
has m distinct roots in E; 

(2) E is a simple algebraic extension of F, that is, E = F(e) for some element 
e E E which is algebraic over F. 

Proof. Necessity of condition (I). Suppose E is a Galois extension of F 
with group ~(£ F) = {rPl, rP2, ... , rPn} · Letfbe a polynomial irreducible over 
F with a root a E E. We let ai' a2 , . .. , a, denote the distinct values among 
the elements rPla, rP2a, ... , rPnaEE. Then any automorphism in ~(E/F) 

simply permutes the elements ai' a2, . .. , a,. It follows that each automor­
phism of ~(E/F) leaves fixed all the coefficients of the polynomial 

gx = (x - al)(x - ( 2) ... (x - a,). 

Thus, all the coefficients of 9 lie in the fixed field F, that is, 9 is a polynomial 
over F. Since a is among the elements ai' a2 , . .. , a" we have ga = 0, and con­
sequently,flg. However, 9 splits in £, and thereforefmust split in E. Clearly, 
the roots off are all distinct. 

Necessity of condition (2). If F is a finite field , then so is E. (Why?) There­
fore the multiplicative group £* is cyclic (100) and has a generator e. It 
follows that E = F(O). This takes care of the case where F is finite . 

Suppose F is infinite. Let a E E be an element left fixed by as few auto­
morphisms of the Galois group ~(£ F) as possible. (Why does such an 
element exist?) We let 

~o = {rP E ~(E/F) I rPe = e}. 

Clearly, ~o is a group. We claim that ~o consists of the identity automorphism 
alone, or in other words, that o(~o) = I. Suppose o(~o) > I. Then the fixed 
field B of ~o is a proper subfield of £ since [£: B J = o(~o). Let 1'/ E £ - B. 
Then there is at least one automorphism in ~o which does not fix 1'/. Take 
'II, 1'/2, ... , 1'/, to be the distinct values among rPll'/, rP < /' . •. , rPnl'/, and similarly, 
take 01, O2 , ••• , as to be the distinct values among rPl 0, rP2 0, ... , rPn O. We may 
assume 1'/ = 1'/1 and a = 01 • Since F is infinite, we may choose c E F to differ 
from all the elements 
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for i = 2, 3, . .. , rand j = 2,3, . .. , s. Let' = '1 + ce = '11 + cel' The choice 
of c insures that' = '1 i + ce j only when i = j = I. Now if , is left fixed by 
¢ E ,§(EjF), we have 

( = ¢( = ¢('1 + ce) = (¢'1) + c(¢e) = '1i + cej = '1 + ce, 

which implies that ¢'1 = '1 and ¢e = e. Thus ( is fixed only by the automor­
ph isms of ,§(EjF) that fix both '1 and e. Since there is at least one automor­
phism in '§O which does not fix '1, it is evident that , is left fixed by fewer 
elements of ,§(EjF) than e. This contradicts the choice of e and establishes 
that '§O has order 1. It follows that the elements ¢I e, ¢z e, ... , ¢n e are dis­
tinct: ¢ie = ¢je implies ¢;I¢ie = e, from which we infer that ¢;I¢i = IE 
and ¢i = ¢ j' Furthermore, the elements ¢I e, ¢z e, . .. , ¢n e are all roots of a 
minimal polynomial for e over F. (Why?) Therefore we have [F(e): F] ;::: n. 
However, F(e) c E and [E: F] = n. Consequently, E = F(e). 

Sufficiency of the conditions. Let E be an extension of F, which satisfies 
conditions (I) and (2). Then E = F(e) and the minimal polynomial of e has n 
distinct roots el = e, ez , . .. , en, where n = [E: F] is the degree of the minimal 
polynomial. Since for all i, F(e i) c E and [F(e i): F] = n, we have F(e;) = E. 
Now we construct n automorphisms of E, ¢I, ¢z, ... , ¢n, by setting 
¢i(e) = ei . Since the set 1, e, ez, ... , en

-
I forms a basis for E over F, each 

element of E may be written as ge where g is a polynomial over F of degree 
less than n. Now we set ¢i(ge) = gei . It follows (as the reader should verify) 
that the mappings ¢I, ¢z, ... , ¢n are automorphisms of E. Clearly, they leave 
F fixed, and therefore E is a Galois extension of F with group ,§(EjF) = 

{¢I, ¢z, ... , ¢n}· 

129a. An extension E of a field F is normal if every irreducible polynomial 
over F with a root in E splits in E. Prove that an extension E of F is Galois if 
and only if it is finite, separable, and normal. (For the definition and proper­
ties of separable extensions see exercises 113a- 113J1.. See also 114a.) Since all 
extensions in characteristic 0 are separable, we may conclude that a finite 
extension of a field of characteristic 0 is Galois if and only if it is normal. This 
explains the occasional use of the word" normal" for what we call" Galois" 
extensions. 

129p. Give an example of an extension which is finite and separable but not 
normal. 

129y. Give an example of an extension which is separable and normal but 
not finite. 
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1290. Let E denote the field of rational functions Zp(x). (See 981X.) Let 
F = Zp(xP) . Show that E is a finite normal extension of F, but not separable. 

130. The Fundamental Theorem of Galois Theory. Let E be a Galois exten­
sion of the field F. If B is a field between E and F, then E is a Galois extension 
of B and ~(E/B) is a subgroup of ~(E/F). Furthermore, B is a Galois 
extension of F if and only if ~(E/B) is a normal subgroup of ~(E/F), in 
which case ~(B/F) is isomorphic to the quotient group ~(E/F)/~(E/B). 

Proof. First we show that E i~ a Galois extension of B . By 129, E = F(e) 
for some e E E. Clearly E = B(e) also. If/is irreducible over B with a root (J. E E, 
then fl g where g is a minimal polynomial for (J. over F. By 129, g has all its 
roots (which number deg g) in E, and they are distinct. Becausefl g , the same 
is true off Thus, conditions (i) and (2) of 129 hold for E as an extension of B. 
Consequently, E is a Galois extension of B. Since FeB c E, it is obvious that 
~(E/B) is a subset of ~(E/F). Both are subgroups of ~(E), hence ~(E/B) is a 
subgroup of ~(E/F). 

Suppose B is a Galois extension of F. Then B = F(~) for some ~ E B. If g is a 
minimal polynomial for ~ over F and deg g = m, then g has m distinct roots in 
B-all the roots it can have. If ¢ E ~(E/F), then ¢(g~) = g(¢~) = 0, and ¢~ 
is a root of g, hence ¢~ E B. It follows that ¢ maps B into B, since the element 
~ generates B over F. Thus for each automorphism ¢ E ~(E/F), its restric­
tion to B, denoted ¢ I B, is an automorphism of B. Furthermore, since ¢ fixes 
F, ¢IB also fixes F, and therefore ¢ I B E ~(B/F). All this information 
can be summed up as follows: there is a group homomorphism h: ~(E/F) 

~ ~(B/F) given by h(¢) = ¢ I B. The kernel of h is the subset of ~(E/F) con­
sisting of all automorphisms whose restriction to B is just 1 B. In other words, 
Ker h = ~(E/B) . The kernel ofa homomorphism is alwaysanormalsubgroup 
(65). Consequently, ~(E/B) is a normal subgroup of ~(E/F). 

Suppose on the other hand that we know ~(E/B) to be a normal subgroup 
of ~(E/F). Then for ¢ E ~(E/B) and ljJ E ~(E/F) we have rl¢ljJ E ~(E/B), 
and for {J E B we have rl¢ljJ{J = {J, or ¢ljJ{J = ljJ{J. Fixing ljJ and letting ¢ 
run through ~(E/B) shows that ljJ{J belongs to B, the fixed field of ~(E/B). 

To summarize, {J E Band ljJ E ~(E/F) imply ljJ{J E B. We may once again 
define a homomorphism h: ~(E/F) ~ ~(B, F) with Ker h = ~(E/B). (Here 
~(B, F) denotes the group of automorphisms of B which leave F fixed; we 
do not yet know that F is the fixed field of ~(B, F).) By 67 we know that h 
induces a monomorphism 

h': ~(E/F)/~(E/B) ~ ~(B, F). 

Now it follows that 

[B: F] = [E: F] / [E: B] = o(~(E/F»/o(~(E/B» .$ o(~(B, F». 
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On the other hand, F is contained in the fixed field of ,§(B, F) and therefore 
[B: Fl ~ o(,§(B, F» . Consequently, [B: Fl = o(,§(B, F)). Then 128 implies 
that B is a Galois extension of F with group ,§(B/F) = ,§(B, F). Finally, we 
note that 

o(,§(E/F)/,§(E/B» = o(,§(B/F» 

implies that h' is an isomorphism. 

BOa. Prove that if E is a Galois extension of F, then there are only a finite 
number of fields between E and F. 

BOp. Let E = Q(() where ( = eZ
•

i/7. Show that E is a Galois extension of Q 
and determine the Galois group. Find all the fields between Q and E, the sub­
group of '§(E/Q) to which they belong, and determine which are Galois exten­
sions of Q. 

BOy. Let E be a Galois extension of F and let Bl and Bz be two intermediate 
fields. (That is, Fe Bl c E and Fe B2 c £.) We say that Bl and Bz are 
conjugate if there is an automorphism ¢ E ,§(E/ F) such that ¢Bl = B2 . Show 
that Bl and Bz are conjugate if and only if the groups '§(E/Bl ) and ,§(E/Bz) 
are conjugate subgroups of ,§(E/F). 

1301). Let E be a Galois extension of F with ,§(E/F) a cyclic group of order 
n. Prove that the following conditions hold: 

(1) For each divisor d of n there exists precisely one intermediate field B 
with [E: Bl = d. 

(2) If Bl and Bz are two intermediate fields, then Bl c B2 if and only if 
[E: Bzl divides [E: Bl ]. 

1301:. Prove the converse of 1301). In other words, show that if (I) and (2) 
hold for the intermediate fields of a Galois extension E of F, then ,§(E/F) 
is cyclic. 

130~. Let E be a finite extension of F and let Bl and Bz be intermediate 
fields such that no proper subfield of E contains both Bl and B2. Show that 
if Bl is a Galois extension of F, then E is a Galois extension of Bz , and that 
'§(E/B2) is isomorphic to a subgroup of ,§(Bl/F). Show that Bl n Bz = F 
implies that '§(E/B2) ~ ,§(Bd F). 

130'1. With the same hypotheses as in 130~ prove that if Bl and B2 are both 
Galois extensions of F, then E is a Galois extension of F. Show further that 
when Bl n B2 = F, ,§(E/F) ~ '§(E/Bl) x ,§(E/B2)' 
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1309. Let C(x) denote the field of rational functions over C, the field of 
complex numbers. Consider the six mappings ¢i : C(x) -> C(x) given by 

¢I :f(x) -> f(x), 

¢3:f(x) ->f(l /x), 

(
X - 1) ¢4:f(x) ->f -x- , 

¢s:f(X)->f(_l ), 
I-x 

¢6:f(x) ->fe ~ J, 
for any rational function f(x) E C(x). Verify that these mappings form a 
group of automorphisms of C(x), and determine the fixed field of this group. 
How many intermediate fields are there? 

1301. Prove that a finite extension of a finite field is Galois with a cyclic 
Galois group. 

131. Symmetric Polynomials. We digress briefly to prove a result on poly­
nomials in several variables needed in the next article. For brevity we avoid 
studied rigor and appeal to intuition. Readers requiring a more thorough 
discussion will find one in van der Waerden's Modern Algebra, Chapter IV, 
§26. 

Let Fn denote the n-fold cartesian product F x F x ... x F. (Recall that a 
point of F" is an n-tuple (el , e2 , . • . , en) of elements of F.) 

A polynomial in n variables over the field F is an expression of the form 

where I denotes a finite sum, the coefficients e(v l , V2, ..• , vn) are elements 
of F, and the exponents VI ' V2, .•. , Vn are nonnegative integers. Each term 
X~'X~2 . • . x~n is called a monomial, and its degree is the sum VI + V2 + ... + Vn . 

The degree of a polynomial is the highest degree among its monomials with 
nonzero coefficients. 

Given a polynomial f in n variables over F and a permutation of n letters, 
7t E Sn , we define a new polynomial f" in n variables over F by setting 

For example, suppose 

f(x l , X2, x 3) = xi + X2 X3 and 7t = (1, 2, 3). 

Then 
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A polynomial/in n variables over F is symmetric iff" = /for alln E Sn. In 
other words, a symmetric polynomial is one which remains the same under all 
permutations of its variables. For example, 

/(x!, X2 , . . . , xn) = x~ + x~ + ... + x; 

is symmetric. The most important symmetric polynomials, as we shall see, are 
the elementary symmetric/unctions O"!, a2 , ... , an defined by the equation 

It follows that 

a!(x!, x 2, ... , xn) = x! + x2 + ... + Xn, 

az(x!, x 2, ... , xn) = L xixj , 
. i<j : 

In general, ak(x!, X2, ... , xn) is the sum of all the monomials XiI Xi, ... x ik ' 
where i! < i2 < ... < ik • If g is any polynomial in the elementary sym­
metric functions, then g(a!, a2 , ... , O"n) = /(x!, X2, ... , xn), where / is a 
symmetric polynomial. For example, 

Theorem. A symmetric polynomial in n variables over the field F can be 
written uniquely as a polynomial in the elementary symmetric functions 
0"1,0"2, ... , O"n over F. 

Proof. The proof is by induction on the number of variables. The case 
n = 1 is trivial. Assume the statement is true for polynomials in n - I (or 
fewer) variables. The induction step from n - 1 to n will be proved by induc­
tion on the degree of the polynomial. The case of zero degree is trivial. 
Suppose that the statement is true for polynomials in n variables of degree 
less than m (as well as for all polynomials in fewer variables). Given a poly­
nomial / of degree m which is symmetric in n variables, we let f' denote the 
polynomial in n - 1 variables given by 

/'(X!, X2, ... , xn-!) = /(x!, x2, ... , xn-!, 0). 

Then/, is symmetric and may be written as a polynomial g(O"~, a~, . . . , O"~_!) 
in the elementary symmetric functions in n - 1 variables, a~, a~, .. . , O"~_!. 
We note that 
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Now consider the polynomial h in n variables given by 

Clearly, h is symmetric and I'll! t!I<:J'more 

h(Xl' X2 , ... , Xn- l , 0) = o. 

COII,<:q uently, Xn divides h, and by sym n I.;,ry so do Xl' X2 , . .. , Xn- l . It follows 
that h = a)i, where ii is symmClf!c and has degree less than m. By our induc­
tion hypothesis, ii may be written as a polynomial 9(01, O2 , ... , an). Finally, 
we have 

We omit the uniqueness argument for brevity. 

131cx. Express the following symmetric polynomials in terms of elementary 
symmetric functions: 

xi + X1X2 + x~ + X2X3 + x~ + X3Xl ' 

xix~ + x~ x~ + X~ xi, 

(Xl - X2)2(X2 - X3)2(X3 - Xl?' 

X~ + X~ + xL 
xi + X~ + xj. 

1311}. Let 1tk(Xl , X2, ... , xn) = ~ + x1 + ... + x~. Prove the following 
Newton identities (used in 147): 

k-l 

(for k :;; n) 1tk +(-ltkak =(-lt+ l I (-lYak - i 1t i , 
i=l 

(fork>n) 

1311. Supply the proof of uniqueness for the theorem of 131. 

1310. Let F(Xl' X2 , . . . , xn) denote the field of rational functions over Fin 
the n variables Xl' X2 , ... , Xn. In other words, F(xl , X2, ... , xn) is the field of 
all quotientsp/q wherep and q are polynomials over Fin Xl' X2 , ... , Xn. Prove 
that F(Xl' X2, ... , xn) is a Galois extension of F(al , O2 , ... , an) with group 
isomorphic to Sn' the symmetric group on n letters. (As above, ai' O 2 , .. • , an 
denote the elementary symmetric functions of Xl' X2 , ... , Xn.) 

132. Let F be a number field and let/be a polynomial over F. The funda­
mental theorem of algebra (101) implies that / splits over C, the field of 
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complex numbers. In general there will be many number fields in which f 
splits, but the smallest such field (containing F) is unique; it is called lhe 
splittingfieldfor f over F. If lXI' 1X2 , ••• , IXn are the roots off, then it is clear that 
the splitting field for f over F is the smallest field containing F and lXI' 1X 2 , ••• , 

IXn, that is, F(IXI, 1X2 , ••• , IXn)· 

Theorem. If E is the splitting field of a polynomial f over the number field F, 
tllen E is a Galois extension of F. 

Proof. We shall verify the conditions of 129. As we remarked above, 
E = F(IX I , 1X2 , ••• , an), where lXI' 1X 2 , ••• , an are the roots off It follows that 
every element of E may be written (in several ways perhaps) as 

where g is a polynomial in n variables over F. 
Suppose that h is an irreducible polynomial over F with a root {3 E E and 

deg h = m. We write {3 = g(IXI, 1X2 , ... , IXn) as above, and for n E Sn, we set 

Consider the polynomial p given by 

p(x) = TI (x - {3 n). 
1t e Sn 

All the coefficients of p(x) are symmetric polynomials in the roots lXI' 1X2 , ••• , 

an off By 131 we have that each coefficient of p(x) may be written as a poly­
nomial in the elementary symmetric functions O'j(IXI, 1X2 , ••• , IXn), i = 1,2, ... , n. 
However, each O'j(IXI, 1X2 , ••• , IXn) E F, since 

is a polynomial over F. Thus p is a polynomial over F and p{3 = O. Since h is a 
minimal polynomial for {3, we have hlp, from which it follows that h has all 
its roots in E. This verifies condition (I) of 129. Condition (2) of 129 is a 
consequence of 114. Thus, the theorem is proved. 

Corollary. The Galois group, <,§(E/F), is a group of permutations of the roots 
lXI' 1X2 , ••• , IXn off 

Proof. Since each 4> E <,§(E/F) leaves Ffixed andfis a polynomial over F, 

and rj>lXj is again a root off 
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132a. Indicate the modifications of the proof of the theorem above which are 
necessary to prove the following more general theorem. 

Let E be the splitting field (in some extension) 01 a separable polynomial 1 
over thefield F. Then E is a Galois extension 01 F. 

Show that if separability of 1 is dropped from the hypotheses, we may still 
conclude that E is a normal extension of F. (See 129a for definition of normal.) 

132p. Let E be the splitting field in C of a polynomial lover Q with no 
repeated roots. Show that C§(EfQ) acts transitively (86) on the roots of 1 if 
and only if 1 is irreducible. 

1321. Let E be the splitting field over Q of a polynomial of degree n. Prove 
that o(C§(EfQ)) divides n!. 
132 Ii. Let E be the splitting field over Q of a polynomial of degree 8 which is 
reducible over Q but has no root in Q. Show that [E: QJ ~ 1,440. 

133. In this article we give an example of a Galois extension for which we 
can compute the Galois group explicitly. 

Let K denote the splitting field over Q of the polynomial X4 - 2, which is 
clearly irreducible over Q by the Eisenstein criterion (107). The roots of X4 - 2 

are ±\l2 and ± i \12. Clearly K = Q(\li, i), and consequently each auto­
morphism of C§(K, Q) is determined by its values on \12 and i. All the pos­
sibilities are given by Table 6. 

Table 6 

Automorphism Value on \12 Value on i 

e \12 
a i\li 
a2 -\Ii 
a3 -i\li 
't \12 -i 

a't i\l2 -i 

a 2't - \Ii -i 

a 3't -i\li -i 

Thus, the Galois group C§(KfQ) consists of the eight automorphisms 
e, a, a2

, a3
, 't, a't, a 2 't, a 3 't which satisfy the relations a4 = e = 't2 and 

'ta't = a 3
. Thus [K: QJ = 8. A basis for Kover Q is 
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The element aT of C§(K/Q) has order 2, since we have 

(aT)(aT) = a(TaT) = aa3 = e. 

Therefore {e, aT} is a subgroup ofC§(K/Q). We shall determine the fixed field 
of this subgroup. An element ~ E K may be written 

~ = C1 + c2~2 + ci~2? + ci~2)3 

+ Cs i + C6 i 0 + C7 i(0)2 + Cs i(~2)3. 

We can compute aT~ directly as 

aT~ = c1 + C2 i ~2 - c3(~2? - C4 i(~2)3 

- Cs i + c6~2 + C7 i(~2)2 -CS(0)3. 

If ~ belongs to the fixed field of {e, aT}, then aT~ = ~ and we must have 
C2 = C6, c3 = - c3 , c4 = - Cs, Cs = - cs , or in other words, C3 = 0 = Cs and 

~ = C1 + c2(1 + i)~2 + C7 i(~2)2 + cs(i - 1)(0)3 

= C1 + c2(i + i)~2 + tC7(i + i)2(~2)2 + 1cs(l + i)\0)3. 

It follows that the fixed field of {e, aT} is Q« I + i)~2). This is not a Galois 
extension of Q, since {e, aT} is not a normal subgroup of C§(K/Q). 

133a. In the example above, justify the implication that e, a, a2
, a3

, T, a" 
a 2

" and a3
, are automorphisms of K that leave Q fixed. 

133p. Determine the Galois group C§(E/Q), where E is the splitting field over 
Q of X4 + x 2 

- 6. 

1331. Find the Galois group of the smallest Galois extension ofQ containing 

)2+;,/i. 
1330. Determine the Galois groups which may occur for splitting fields of 
cubic equations over Q and give an equation for each case. 

134. The field of n-th roots of unity. Let E denote the splitting field over Q of 
x" - I . The roots of x" - 1 are the complex numbers 

I , C e, ... , ("- I, 

where ( = e2ni
/". These roots form a group themselves- the group K" des­

cribed in 44. Since E is a splitting field, it is clearly a Galois extension of Q. 
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Furthermore, ( is a primitive element; that is, E = Q((). Consequently, each 
automorphism 4> of the Galois group <§(E/Q) is completely determined by its 
value on (. Since 4> can only permute the roots of xn - 1, we must have 
4>( = (k for some k such that 1 ::;; k < n. Not every such k will do: if (k, n) = d 
and d> 1, then 

and 4> could not be one to one. Therefore if 4> E <§(E/Q), then 4>( = (k, where 
(k, n) = 1 and (k is a primitive n-th root of unity (44). There are 4>(n) primitive 
n-th roots of unity (where 4> denotes the Euler totient function of 25). It 
follows that <§(E/Q) can contain at most 4>(n) distinct automorphisms, and as a 
result [E: QJ ::;; 4>(n). To see that [E: QJ is exactly 4>(n), we prove the following 
theorem. 

Theorem. A minimal polynomial over Q for ( = e2ni
/
n has every primitive 

n-th root of unity as a root. 

Proof. We may factor ~ - 1 as a product of polynomials which are irre­
ducible over Q and which have integral coefficients (106). One of these factors, 
call it/, must have (as a root. Sincefis irreducible, it must be a minimal poly­
nomial for ( over Q. What is more, because f and all the other factors have 
integral coefficients, it follows thatfis monic (has leading coefficient 1). We 
note for future reference that this implies 

fx = (x - wI)(x - ( 2) ••• (x - wr), 

where WI' W2' ... , Wr are the roots off 
Let fk denote the polynomial over Z given by he x = f(xk). Since f is monic, 

we may invoke the division theorem for polynomials over Z (99cx) to write 
fk uniquely ashe = qd + rk, where qk and rk are polynomials over Z and either 
deg rk < degf or rk = 0 (which means that flfk). Next, we observe that rk 
depends only on the congruence class of k modulo n. Indeed, if k := I mod n, 
we have (k = (', and consequently, 

fW) - feel) = fk ( - f, ( = 0 

and ( is a root ofhe - f" from which we conclude thatfl (he - f,) and rk = r,. 
Therefore each rk equals one of the polynomials r1 , r2 , ••• , rn. 

Let v be a natural number exceeding the content (106) of all the polynomials 
'1' '2' ... , 'n· Then it follows that 'k = 0 if there exists a natural number 
p> v such that pl'k (p divides each coefficient of rk). Now we claim: whenever 
p is p,ime and p > v, then p I r p and therefore r p = 0, in other words, flfp • To 
establish this claim, we first remark that pi (fp - fP) where fP is f raised to 



Galois Extensions 121 

the p-th power. To put it another way,fp = fP + PA where A is a polynomial 
over Z. (Why?) We may write A uniquely as A = U + p where deg p < degfor 
p = O. Now we have 

and by uniqueness it foIlows that r p = pp. Since by hypothesis p > v, pi r p 

implies rp = 0 andflfp . We have proven our claim. 
Now we are able to show that (k, /1) = i implies (k is a root off We would 

be finished if we knew there were a prime p such that p > v and p == k mod n. 
For thenflfp would imply that ( is a root of fp or equivaiently,fp ( = f«(P) = 

fW) = O. As a matter of fact, by a theorem of Peter Gustav Lejeune Dirichlet 
(1805-1859), such a prime wiIl always exist, but we are not able to give the 
proof of this theorem, which is difficult. Fortunately there is an elementary 
argument which avoids this point. 

Let P denote the product of all the primes less than or equal to v except those 
dividing k, and set 1= k + nP. Certainly I == k mod nand (' = (k . Furthermore, 
primes dividing / must all be larger than v since primes less than or equal to v 
divide either k or nP, but not both. As a result 

1= P,P2 . .. Ps, 

where Pi is prime and Pi> v for i = I, 2, ... , s. By our previous argument we 
know thatflfp, for each Pi in the factorization of I. Since (is a root offand 
flfp " it foIlows that (is a root off PI or thatfpJO = f«(PI) = O. Since we now 
have (PI is a root off and flfp2 , it foIlows that (PI is a root of f p2 , or that 

In s steps of this kind, we obtain (PIP2 ... Ps = (' = (k is a root of f and the 
proof is complete. 

Corollary. If E is the field of n-th roots of unity over Q, then [E: Ql = 4>(n) 
and the Galois group ,§(E(Q) is isomorphic to Z~. 

Proof. It is clear from the theorem and the discussion preceding it that 
[E: Ql = 4>(n) . An isomorphism ,§(E(Q) ..... Z~ is given by 4> ..... [kln when 4> is 
determined by 4>( = (k. If 4>( = (k and t/!( = (', then 

and consequently, 4>t/! ..... [kl)n = [kln[lln, which verifies that the mapping is a 
homomorphism. It is evident that this homomorphism is also a one-to-one 
correspondence. 
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It follows from the theorem that a minimal polynomial for ( over Q is 
given by multiplying together all the factors x - (k where (k, n) = I and 
1 ~ k < n. This polynomial, denoted <1>n, is called the n-th cye/otomic poly­
nomial (cyclotomic means" circle dividing "). <1>n is a monic polynomial which 
is irreducible over Z and deg <1>n = cp(n). Gauss was the first to show irredu­
cibility of <1> p for p a prime. Many proofs of irreducibility for this special case 
(see 107~) and for the general case have been found. A detailed survey of those 
given up to 1900 may be found in Ruthinger, Die lrreducibilitiitsbeweis der 
Kreisteilungsgleichung, (Inauguraldissertation, Kaiser Wilhelms Univer­
sitat, 1907). The proof of the theorem above is an adaption by Artin of an 
argument of Landau which appears in Vol. 29 (1929) of the Mathematische 
Zeitschrift. 

134a. Show that (k is a primitive (n fd)-th root of unity if and only if (k, n) = d. 
Apply this to prove that 

x" - 1 = TI <1>ix). 
din 

134~. Use the formula of 134a to compute <1>n(x) for 1 ~ n ~ 10. 

134y. Let m and n be natural numbers such that every prime p dividing m is 
a divisor of n. Prove that <1>mn(x) = <1>.( xm). Use this to compute <1>24' <1>36' 
and <1>100 . 

1340. Let E = QCO where ( = e2ni
/
n and n is odd. Show that E contains all 

the 2n-th roots of unity. 

134£. Prove that <1>2n(X) = <1>n( -x) when n is odd. Io,;> ,\. • 
I 

134~. Show that for any n-th root of unity, 

I + + 2 n - 1 {n when w = 1, W W+···+W =0 h -'-1 w en W T • 

13411. Determine [Q(cos 2nr): QJ for r E Q. 

1349. Prove that the cyclotomic polynomial satisfies 

<1>1I(X) = TI (~ - l)~(n/d), 
din 

where J1 denotes the Mobius function (25~). 

1341. Using 134a, y, £, and 9 and the results of 134JJ, compute <1>n(x) for 
11 ~ n ~ 36. 

135. Theorem. A regular polygon of n sides is constructible with straightedge 
and compass if and only if cp(n) is a power of 2. 
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Proof. We observe that the construction of a regular polygon of n sides is 
equivalent to the division of a circle into n equal arcs. Such a division of the 
unit circle in the complex plane is equivalent to the construction of the n-th 
roots of unity. Thus, a regular polygon of n sides is constructible with straight­
edge and compass if and only if the splitting field E over Q of the polynomial 
x" - I is a constructible field. By 120 E is constructible only when the number 
[E: QJ = ¢(n) is a power of 2. 

On the other hand when ¢(n) = 2k, the Galois group ~(EIQ) = Z;, has order 
2k and by 74 is a solvable group. Explicitly, there is a composition series 

{e} = Go c GI C ... C Gk = ~(EIQ) 

in which o( G;) = 2 i. We let Ei denote the fixed field of E under Gk _ i' Then we 
have a tower of fields, 

Q = Eo C EI C ... C Ek = E, 

in which each term is a Galois extension of any of the preceding terms. 
Furthermore, 

A finite induction, using the fact that a quadratic extension of a constructible 
field is constructible (See 120a), shows that E is constructible. 

136. The preceding theorem leads us to determine the values of n for which 
the Euler totient function ¢(n) is a power of 2. It follows from 25 that n must 
have the form 2'PIP2 ... Pk where Pl,P2,'" ,Pk are the distinct odd primes 
dividing n and where ¢(p;) is a power of 2 for i = I, 2, ... , k . Since ¢(p;) = 
Pi - I, we can reduce the problem to the question of finding all primes of the 
form 2m + 1. 

We note that 2m + I is prime only if m itself is a power of 2. In fact if 
m = uv where v is an odd number, then we have 

2m + 1 = (2" + 1)(2"(0-1) - 2"(0-2) + ... - 2" + 1). 

In other words, m cannot be divisible by any odd number and must be a 
power of 2. Our problem is now reduced to the question of finding all the 
primes of the form 22< + 1. Fermat (1601--1665) conjectured that all the 
numbers 22< + 1 are prime, and such numbers are frequently called Fermat 
numbers. Forq < 5thenumber22< + 1 is prime, butin 1732 Euler (1707-1783) 
discovered that 

22' + 1 = 641 x 6,700,417. 



124 4 Galois Theory 

For no value of q above 4 is 22< + 1 known to be prime, and for many values 
it is known not to be. 

q o 
--------

22< + 1 3 5 

2 

17 

Table 7 

3 4 5 

257 65,537 4,294,967,297 

In summary, we can say that a regular polygon of n sides is known to be 
constructible whenever n = 2' s~o S~1 .•. S~4 where r:?:: 0, ei = 0 or 1, and 
Si = 22

' + 1, i = 0, 1, 2, 3, 4. 
The constructions of the equilateral triangle (n = 3) and the regular penta­

gon (n = 5) were known to the ancient Greeks. The construction of the 
regular heptadecagon (n = 17) is a discovery of Gauss, who requested that a 
regular heptadecagon be inscribed on his tomb. The construction of the 
regular 257-gon was carried out by Richelot in 1832. Professor Hermes of 
Lingren devoted ten years of his life to the construction of the 65,537-gon. 
His extensive manuscripts reside in the library at Gottingen. Although many 
valuable works were destroyed in the flooding of this library, a result of 
bombings during World War II, Professor Hermes's work was untouched. 

136a. List the regular polygons of 100 sides or less which are constructible 
with straightedge and compass. 

136p. Suppose that the regular polygons of m sides and n sides are construc­
tible with straightedge and compass. Prove that a regular polygon of [m, n] 
sides is constructible. 

137. The RegulaI' Pentagon. As a concrete illustration of the preceding 
articles, we take up construction of the regular pentagon. 

Let E denote the splitting field over Q of the polynomial 

x 5 
- 1 = (x - 1)(X4 + x 3 + x 2 + X + 1). 

E = Q(O where ( = e2
•

i
/
5 = cos 72° + i sin 72°. The Galois group <§(E/Q) is a 

group with [E: Q] = 4 elements 0'1' O'Z, 0'3,0'4' each of which is completely 
determined by its value on (; O'i( = (i. The group <§(E/Q) is actually a cyclic 
group of order 4 generated by 0'2 . If we write 0' for 0'2 , then O'z = 0'4, 0'3 = 0'3 , 

and 0'4 = 0'1' which is the identity. In other words, <§(E/Q) = {I, 0', 0'2, 0'3} 

where 0'( = (2. 
The only proper, nontrivial subgroup of <§(E/Q) is the normal subgroup 

H = {I, O'Z}. Consequently, if B is a field between Q and E, then by the 
fundamental theorem of Galois theory, <§(E/B) is a subgrou-p of <§(E/Q), and 
in this case it must be that <§(E/B) = H (unless B = Q or B = E). This means 
that we can determine B as the fixed field of the group H. 
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The numbers C (2, (3, (4 form a basis for E over Q. (Why?) An element 
IX = al ( + a2 e + a3 e + a4 (4 of E belongs to B if and only if a2

1X = IX. We 
compute 

Thus, a2
1X = ex if and only if a1 = a4 and a2 = a3 • In other words, IX E B if and 

only if IX = b11ll + b2 112, where 111 = ( + (4 and 112 = (2 + (3. We note that 

111 + 112 = (+ (2 + e + (4 = -1, 

111112 = (( + (4)W + (3) = (3 + (4 + ( + (2 = -1. 

(This follows from the fact that ( is a root of X4 + x 3 + x2 + X + 1, and con­
sequently, (4 + (3 + (2 + ( + 1 = 0.) We now see that 111 and 112 are roots of 
the polynomial over Q, 

Solving this quadratic and noting the position of the roots of unity C (2, (3, (4 
on the unit circle (Figure 14), we see that 

'11 = --!- + tJS = 2 cos 72°, 

112 = -t - tJS = -2 sin 72°. 

It follows that B = Q(j5). For the sake of completeness we observe that ( is a 
root of the equation x 2 

- 111 X + 1 = 0 over B. 

\' 

\' 

Figure 14 

Let us see how we may use this information to construct a regular pentagon. 
To construct C it is sufficient to construct cos 72° = I1d2. This is easily 
accomplished as shown in Figure 15. 
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B 

C~+-----~~--~----~A 

D 

Figure 15 

Beginning with the unit circle centered at the origin 0 = (0, 0) and the four 
points A = (1,0), B = (0, I), C = (-1 , 0), and D = (0, -I), the midpoint 
E = (0, -1 /2) of the radius OD is constructed. The line segment AE has 

length J"S/2. Next, the point F on OB is constructed so that EF has the same 
length as AE. Then the length of OF is 

111 = -t + tJ"S. 
The point G = (cos 72°, sin 72°) is determined by the perpendicular to OA 
through F', a point whose distance from 0 is cos 72° = l1d2. (In a simpler 
construction one observes that AF has the same length as one side of the 
pentagon.) 

1371X. Analyze completely the Galois extension E = Q(() where, = e2
•

i
/7 ; 

determine all intermediate fields, whether or not they are Galois extensions of 
Q, and all the Galois groups involved. 

137~. Construct a regular polygon of 15 sides. 

138. The Regular Heptadecagon. The construction of the regular hepta­
decagon follows the same pattern as the construction of the regular pentagon. 
However, the additional complexity is enlightening, and we shall sketch the 
algebraic preliminaries in this article. 

Let E denote the splitting field over Q of the polyno·mial 

X17 
_ 1 = (x - 1)(X16 + x 1S + ... + x + 1). 

The roots of X
17 

- I are the complex numbers I," (2, . .. , (16, where 
( = e2 •

i
/
17

• E = Q(() and [E: QJ = 16. 
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The Galois group C§(E/Q), which is isomorphic to Z '17 , may be represented 
as a set with 16 elements, </>1' </>2, . .. , </>16, where </>i is the automorphism of E 
determined by </>i' = ,i. This group is a cyclic group of order 16 generated by 
</>3 as we shall see. From now on we shall denote </>3 simply by </>. Since 
</>, = ,3, we have 

(</>2K = </>(</>O = </>W) = (</>03 = (, 3)3 = C2
, 

and, in general, (</>iK = C'. However, ,17 = 1 and the value of ,k depends only 
on the congruence class of k modulo 17. At this point we need a table of 
powers of 3 modulo 17. 

Table 8 

i 0 I 2 3 4 5 6 7 8 9 IO 11 12 13 14 15 

mod 17) 1 3 9 10 13 5 15 II 16 14 8 7 4 12 2 6 

From this table we can see that </>0 = </>1' </>1 = </>3' </>2 = </>9' and so forth ; and 
we can verify that the powers of </>, that is, 1 = </>0, </>1, </>2, . . . , </>15, run 
through the set </>1' </>2' ... , </>' 6 ' It also serves to interpret </> j as a power of </>. 

In what follows we let 'i denote </>i, = ,3'. We note that 

This fact is very convenient for making computations. (Table 8 may be used to 
convert 'k to a power of, and vice versa.) 

The group C§(E/Q) = {t, </>, </>2, . . . , </>IS} has three proper, nontrivial sub­
groups, each of which is normal, since C§(E/Q) is abelian. These subgroups are 

GI = {I, ¢8} 

G2 = {I, ¢4, </>8, ¢IZ} 

G3 = {t, ¢Z, ¢4, ... , ¢14} 

In fact, the series 

order 2, 

order 4, 

order 8. 

is the one and only composition series which C§(E/Q) admits. 
By the fundamental theorem of Galois theory there are three intermediate 

fields: the fixed fields B I , B2 , and B3 of GI , Gz , and G3, respectively. We have 
a tower of fields 
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We note that the complex numbers (, (2, ... , (16 form a basis for E over Q, 
or in other words, the numbers (0' (I' ... , (15 form a basis. Furthermore, 

(Why?) With these facts at our disposal we are ready to determine the fields 
BI , B2 , and B3 • 

B3 is the fixed field ofG3 = {I, (p2, ¢4, ... , ¢14}. Since G3 is a cyclic group 
generated by ¢2, it follows that a E E is fixed by every element of G3 if and 
only if it is fixed by ¢2. In other words, 

Using the basis (0, (I' ... , (15' we write 

aiEQ. 

Then 

(Note that ¢2(14 = (16 = (3 16 = (= (0 and ¢2(15 = (d Now we see that 
¢2a = a and a E B3 if and only if 

a o = a, = a4 = ... = a14, 

and 

Thus, a E B3 if and only if a = ao ~o + al~1 where ao , al E Q and 

~o = (0 + (2 + (4 + ... + (14 = ( + (9 + (13 + (15 + (16 + (8 + (4 + (2, 

111 = (I + (3 + (5 + ... + (15 = (3 + (10 + (5 + (II + (14 + C + (12 + (6. 

Now 

110 + 111 = (0 + (I + ... + (15 = -I. 

Furthermore, 110 ~I is left fixed by ¢2 and must be expressible as ao ~o + a l 111 
for some ao, al E Q. Multiplying the expressions for 110 and 111 yields 

~0111 = 4110 + 4111 = -4. 

Thus, 110 ·and 111 are roots of the polynomial x 2 + x - 4, and B3 = Q(I1) where 
~ is either root ~o or ~I of the polynomial. Of course we can solve the equation 
x 2 + x - 4 = 0 to determine 

11 = -t ±tJ17, 
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from which it follows that B3 = Q(J17). The elements YJo and YJl are called 
periods of length 8, since each is a sum of eight of the roots (0' (1' ... , (15' 

The fields B2 and BI are determined in a similar fashion . A basis for B2 over 
Q consists of the four periods of length 4, 

~o = (0 + (4 + (8 + (12' 

~I = (I + (5 + (9 + (13, 

~2 = (2 + (6 + (10 + (14' 

~3 = (3 + (7 + (II + (15' 

Direct computation shows that the following relations hold among the ~i : 

~0+~2=YJO' ~1+~3=YJI' 
~0~2 = -I = ~1~3' 

~I = (~o - I)/(~o + I), 
~2 = (~I - I)/(~I + I), 
~3 = (~2 - 1)/(~2 + I), 

~o = (~3 - 1)/(~3 + I). 

Thus, ~o and ~2 are roots of the polynomial x 2 - YJo x - lover B3 , and ~ I and 
~3 are roots of x 2 - YJIX - I . Consequently, B2 = B3(~) where ~ is a root of 
x2 - YJX - I. 

A basis for BI over Q consists of eight periods of length 2: 

AO = (0 + (8, A4 = (4 + (12' Ao + A4 = ~o, 

Al = (I + (9, A5 =(5+(13, Al + A5 = ~I' 

A2 = (2 + (10' A6 = (6 + (14' A2 + A6 = ~2' 

A3 = (3 + (II' A7 = (7 + (15' A3 + A7 = ~ 3 . 

At this stage it is easy to show how to multiply these periods: 

Ao A4 = «(0 + (8)«(4 + (12) = «( + (16)«(13 + (4) 

= (14 + (5 + (29 +(20 

= (14 + (5 + (12 + e 
=(9+(5+(13+(1 

= ~I' 

Similar computations show AIA5 = ~2' A2 A6 = ~3' and A3 A7 = ~o. Conse­
quently, 

AO and A4 are roots of x 2 - ~o X + ~I over B2 , 

Al and A5 are roots of x 2 
- ~IX + ~2 over B2 , 

A2 and A6 are roots of x 2 - ~2 X + ~3 over B2, 

A3 and A7 are roots of x 2 - ~ 3 X + ~o over B2 . 
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Using the relation between ~I and ~o above, we see that AO and A4 are roots of 

We conclude (without giving details) that BI = B2(A) where A is a root of the 
polynomial 

(~ + l)x 2 
- (~ + I)~x - (~ - I) 

over B2 . 

Finally the same kind of analysis shows that E = B2m where' is a root of 
x 2 

- AX + lover B I • 

In summary we have worked out the following relations between the fields 
Q, B3, B2, BI , E: 

E = Blm where' is a root of x 2 
- Ax + lover BI , 

BI = B2(A) where A is a root of (~ + l)x2 - (~ + I)~x - (~ - I) over B2, 

B2 = B3(O where ~ is a root of X2 - YfX + lover B3, 

B3 = Q(Yf) where Yf is a root of x 2 + X - 4 over Q. 

We could use this information to formulate a geometric construction of the 
regular heptadecagon, but there is little interest in actually doing so. Many 
constructions are available to the reader. (See Eves, A Survey of Geometry, 
Vol. I, p. 217, or Hardy and Wright, An Introduction to the Theory of Numbers, 
p.57.) 

Solvability of 
Equations by Radicals 

139. Let f be a polynomial over a number field F. The equation fx = 0 is 
solvable by radicals if all the roots offcan be obtained from elements of Fby a 
finite sequence of rational operations (addition, subtraction, multiplication, 
and division) and extractions of n-th roots. 

For example, the sixth-degree equation over Q, 

X6 - 6x4 + 12x2 
- IS = (x 2 

- 2)3 - 7 = 0, 

is solvable by radicals. In fact all six roots may be expressed as Z; 2 + V"7 
provided we interpret V7 as any of the three cube roots of 7 and Z; 2 + V7 as 
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either of the square roots of 2 + V7. Quadratic, cubic, and quartic equations 
are solvable in radicals. 

In 1799 Paolo Ruffini (1765-1822) tried to prove the existence of quintic 
equations not solvable in radicals. The argument Ruffini gave was inadequate, 
and the question was settled decisively by A bel in 1824. Galois gave a necessary 
and sufficient condition for solvability of an equation of any degree by radicals, 
which dramatically supersedes the work of Abel and Ruffini. 

140. The simplest and most clear-cut case of an equation over a number 
field F which is solvable by radicals is the equation x" - Ct = 0 where Ct E F*. 
We have already examined the special case F = Q and Ct = 1 in 134. Now we 
take up the general case as preparation for the Galois criterion for solvability 
by radicals. 

Let E denote the splitting field of x" - Ct over F. If P is a root of x" - Ct, then 
the other roots are PC P(2, ... , p(n-i, where ( = e2ni/n. Since p and P( belong 
to E, it follows that ( = (PO/P belongs to E, and therefore E contains all the 
n-th roots of unity, I, C (2, . .. , (n-i. Clearly, E = F(C P). 

E is a Galois extension of F by 132, and since E = F(C p), each element of 
the Galois group <§(EfF) is determined by its value on the two elements ( and 
p. If ¢ E <§(EfF) , then ¢ must carry ( to (k where (k, n) = I. (This is shown by 
the argument of 134.) On the other hand, ¢ can only permute the roots p, PC 
. .. , p(n-i of xn - Ct, so that ¢(P) = pel. Thus, the two numbers k and I 
determine the automorphism ¢ completely. In general only certain values of 
k and I will give elements of <§(EfF) . 

140a. Determine the Galois group <§(EfF) where E is the splitting field over 

F of x 6 
- 8 for the cases when F = Q, F = Q(J2), and F = Q(w) where 

w = e2ni/3 = --!- + -!-p. 

141. Theorem. If E is the splitting field of the polynomial x" - Ct over a 
number field F, then the Galois group <§(EfF) is solvable. 

Proof. By the analysis of 140, E = F(C P) where ( = e2ni/n and p is a root of 
xn - Ct. Let B = F(O. Then B is the splitting field of x" - lover F and is a 
Galois extension. By the fundamental theorem of Galois theory (130) we 
know that <§(EfB) is a normal subgroup of <§(EfF) and that <§(BfF) is the 
quotient group. <§(EfB) contains just those automorphisms of <§(EfF) which 
leave ( fixed. In terms of 140, ¢ E <§(EfB) when k = I. Consequently, an 
automorphism ¢ E <§(EfB) is completely determined by the number I where 
¢(P) = P(l. In fact the assignment ¢ 1-+ I identifies <§(EfB) with a subgroup of 
the finite abelian group Zn· (Why?) It follows that <§(EfB) is a solvable group 



132 4 Galois Theory 

(75). Next we want to see that "1(B/F) may be identified with a subgroup of 
Z~, and this will show that "1(B/ F) is solvable. From the proof of the funda­
mental theorem (130), we recall that the epimorphism "1(E/F) --> "1(B/F) is 
given by the assignment 1>1-+ 1> I B. However, the restriction 1> I B of any 
1> E "1(E/F) is completely determined by the number k of 140. The mapping 
given by (1) I B) 1-+ k identifies "1(B/F) with a subgroup ofZ~. Now we have that 
"1(E/F) is solvable, since the normal subgroup "1(E/B) and the corresponding 
quotient group "1(B/F) are solvable (75). 

142. A radical tower over F is a tower of number fields 

F = Fo C F1 C ••• c Fn 

in which, for i = 1, 2, ... , n, Fi is the splitting field of a polynomial :x!" - (Xi 

over Fi -1' Such a tower is Galois if the top field Fn is a Galois extension of the 
ground field Fo . 

Proposition. Every radical tower can be embedded in a Galois radical tower. 

Proof. We shall show that given a radical tower over F, 

F = Fo C F1 C ••• c Fn, 

we can construct a Galois radical tower over F, 

F=Fo cF1 c .. · cFm, 

such that Fn c F m' We begin by setting F1 = Fl' Since FI is the splitting field 
of Xk' - (Xl over Fo, by 132 FI is a Galois extension of Fo. (If n = I, we would 
be finished-the two-story tower Fo c FI is Galois.) Let the Galois group of 
FI over Fo be 

F2 is the splitting field of Xk2 - (;(2 where (X2 E FI = FI and (;(2 is algebraic over 
Fl' Now we let F2 be the splitting field of Xk2 -1>1(;(2 over FI, F3 the splitting 
field of :x!'2 - 1>2 (X2 over F 2' and so forth, down to F,+ I, which is the splitting 
field of Xk2 - 1>, (X2 over F,. Now the field F,+ I is a Galois extension of F 
because it is the splitting field of the polynomial 

all of whose coefficients lie in F. (Why?) Furthermore, (X2 is among the 
numbers 1>1 (X2 , 1>2 (X2 , • .. , 1>, (X2' and consequently, F2 c F,+ l' (If n = 2, we 
are finished.) 
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This argument can be continued, extending the Galois radical tower 

to a new one containing F3 . In performing this next stage of the construction, 
it is necessary to use the Galois group ,§(Fr+I /Fo) in place of ,§(FdFo) and (X3 

in place of (X2, but otherwise the argument is similar. The entire argument 
is iterated until a Galois extension F m containing Fn is reached. 

143. A number field E is a radical extension of a number field Fifthere exists 
a radical tower over F, 

F= Fo C FI c··· c Fn, 

such that E c Fn . In view of the preceding proposition, we may assume with­
out loss of generality that Fn is a Galois extension of F. 

Proposition. If D is a radical extension of E and E is a radical extension of F, 
then D is a radical extension of F. 

Proof. Let 

F = Fo C FI C . . . c Fn 

and 

be radical towers such that E c Fn and DeEm. Suppose that Ei is the split­
ting field of X"' - (Xi over E i- I. Then we let Fn+ i be the splitting field of x"' - (Xi 

over Fn+i- I in order to define inductively fields Fn+l , Fn+2 , •.. , Fn+m' It 
follows that 

F = Fo C FI C . .. c Fn c Fn+1 c ... c Fn+m 

is a radical tower over F. Furthermore, for i = 0, I, ... , m, we have 
Ei C Fn + i' Hence, DeEm c Fn+m and D is therefore a radical extension of F. 

144. Proposition. If a number field E is a Galois extension of a number field F 
and the Galois group ,§(E/F) is cyclic, then .£ is a radical extension of F. 

Proof. First we shall prove the proposition for the special case that F con­
tains the n-th roots of unity, I, " ... , (n-I for n = o(,§(E/ F)). The general case 
will follow from the special case. 
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By 129 we have E = F(e) for some element e which is algebraic over F. We 
define the Lagrange resolvent ((k, e) E E of e by (k with the formula 

n-I 
((k, e) = L (ki(4> ie) = e + (\4>e) + ... + (k(n-I)(4>n- 1e), (I) 

i=O 

where ,§(E/F) = {I, 4>, 4>2, ... , 4>n-I}. Next we compute the sum of all the 
Lagrange resolvents of e: 

The last step in this computation is justified by the observation: 

(

n, for i == 0 mod n, n-I 
L ((i)k = 1 + (i + ... + (nn-I = 1 _ ((i)n . 

k=O 1_(i =0, for l'!-O mod n. 

(3) 

Consequently, we have 

1 n-I 
e=- L W,e). 

n k=O 

Now we observe how the Lagrange resolvents behave under the automor­
ph isms of the Galois group ,§(E/F). Since 4> leaves F fixed, we have 4>((i) = (i 
for each n-th root of unity. Consequently, we can compute directly that 

and what is more, 

In other words, 4> leaves the number (Xk = ((k, e)n fixed, As a result, all the 
elements of ,§(E/ F) leave fixe(f each of the numbers (Xk for k = 0, I, ... , n - I, 
and consequently these numbers belong to F. Now we can construct induc­
tively a radical tower 

F = Fo C FI C ..• c Fn 

by taking F i + 1 to be the splitting field of x" - (Xi over F i • Then Fn contains all 
the Lagrange resolvents of e, and hence, 

In-I 
e = - L W, e) 

nk=O 

belongs to Fn. Thus, E = F(e) c Fn, and we have shown that E is a radical 
extension of F. 
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The general case, in which F need not contain all the n-th roots of unity, is 
proved from the special case as follows. Since E = F(O) is a Galois extension of 
F, E is the splitting field of a minimal polynomial for 0 over F, call it! The 
field F(C 0) is the splitting field of the polynomial g over F given by gx = 

(x" - I)(fx). By 132, F(C 0) is a Galois extension of F. It follows from 130 that 
F(C 0) is a Galois extension of F(C) . A homomorphism of Galois groups 

H: ~(F(C O)/F(C» -+ ~(E/F) 

is defined by H(t/J) = t/J I E (the restriction of t/J to E). It is not difficult to 
verify that t/J is well defined, preserves composition of automorphisms, and is 
one to one. As a result the group ~(F(C O)/F(C» is isomorphic to 1m H, which 
is a subgroup of the cyclic group ~(E/F), and hence, by 43 is itself a cyclic 
group. Therefore ~(F(C O)/F(C» is a cyclic group, and its order m (which is 
also the order of 1m H) divides n, the order of ~(E/F). Thus F(C 0), as an 
extension of F(O, satisfies the hypothesis of the proposition: its Galois group 
is cyclic of order m. Furthermore, F(C) contains the m-th roots of unity, 
1, ,'Im, ,2'lm, ..• , c<m-I).lm, becausemln. We have the situation of the special 
case, and may conclude that F(C 0) is a radical extension of F(O. Now F(C) is 
quite clearly a radical extension of F, and by 143, so is F(C 0). If F = Fo c: 
FI c: ... c: F. is a radical tower such that F. contains F(C, 0), then F. contains 
E = F(O), which is a subfield of F(C 0). Thus E is a radical extension of F. 

144a. Let E be a Galois extension of a number field F, with the property 
that BI c: B2 or B2 c: BI for any two intermediate fields BI and B2 . Show that 
E is a radical extension of F. 

144p. Let E be a Galois extension of a number field F with ~(E/F) abelian. 
Show that E is a radical extension of F. 

145. Theorem (Galois). Let I be a polynomial over a number field F and let 
E be its splitting field. The equation Ix = 0 is solvable by radicals if and only 
if the Galois group ~(E/F) is solvable. 

Proof. A moment's reflection reveals the equivalence of the two state­
ments: 

(I) the equation Ix = 0 is solvable by radicals over F; 
(2) the splitting field of I is a radical extension of F. 

(In fact the second statement is often taken as a definition of the first.) We 
must prove that E is a radical extension of F if and only if ~(E/F) is solvable. 

Suppose E is a radical extension of F. Then there is a Galois radical tower 

F = Fo c: FI c: ... c: F. 
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such that E c F. . F. is a Galois extension of F = Fo, and hence, a 
Galois extension of each Fi • Furthermore, each Fi is a Galois extension of 
Fi- 1 . Consequently, setting G i = C§(F.fF.-i)' we have that 

is a normal series. The factors of this series are the groups 

by 130, and by 141, C§(F.-i+JF.- i) is solvable. Thus, C§(F./Fo) has a normal 
series with solvable factors and therefore is a solvable group itself (75P). 
Applying the fundamental theorem (130) to the fields FeE c F., we have 

C§(E/F) ~ C§(F./F). 
C§(F. /E) 

Since C§(E/F) is isomorphic to a quotient group of the solvable group 
C§(F. /F), it follows from 75 that C§(E/F) is solvable. 

On the other hand, suppose that C§(E/F) is a solvable group. Let 

{l} = Go C G1 c··· c G. = C§(E/F) 

be a composition series for C§(E/F) . Let Fi denote the fixed field of the group 
G. _ i' Then we have a tower over F, 

F = Fo C Fl C '.' . c F. = E. 

Furthermore, C§(E/Fi) = G.-i ' Now G.- i is a normal subgroup of G.-i+l' 
and by the fundamental theorem (130) we may conclude that Fi is a Galois ' 
extension of Fi - 1 with 

Since C§(E/F) is solvable, the group G._ i+tfG.- i is cyclic (of prime order), and 
therefore C§(FJFi-d is cyclic. By 144 Fi is a radical extension of Fi- 1• 

Applying 143 inductively yields III a finite number of steps that E = F. is a 
radical extension of Fo = F, and the proof is complete. 

145a. Letfx = 0 be an equation of degree 6 which is solvable by radicals. 
Prove thatfx = 0 is solvable by the extraction of square roots, cube roots, and 
fifth roots only. 

145p. Prove that equations of degree 2, 3, and 4 must be solvable by radicals. 
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146. Quadratic Equations. ~he simplest possible example of the preceding 
theory is the solution of the quadratic equation 

x 2 
- px + q = O. 

We assume that p and q are elements of a number field F and that x 2 
- px + q 

is irreducible over F with splitting field E. As a result [E: F) = 2, and 
t§(E/F) = {I, 4J} is a cyclic group of order 2. Furthermore, F contains the 
square roots of unity, ± 1. If (Xl and (X2 are the roots of x 2 

- px + q, then 
p = (Xl + (X2 and q = (XI(X2. According to 144, we can solve the equation by 
means of the Lagrange resolvents. We compute: 

(I , (Xd = (Xl + 4J(XI = (Xl + (X2 = p, 

(-I, (Xl) = (Xl - 4J(XI = (Xl - (X2, 

(I, (X2) = (X2 + 4J(X2 = (X2 + (Xl = p, 

(-1, (X2) = (X2 - 4J(X2 = (X2 - (Xl = -( -1, (Xl)· 

If we let e = (-1, (Xl) = -( -I, (X2)' then we have 

(Xl = H(I, (XJ + (-I, (X2)} = t(p + 0, 
(X2 = H(I, (X2) + (-I, (X2)) = t(P - e). 

Now the theory predicts that the squares of the LaGrange resolvents will be 
elements of F. This is obviously true for (I, (Xl) and (1, (X2) because p E F. 
However, we also have 

e2 = (Xi - 2(XI (X2 + (X~ = «Xl + (X2)2 - 4a1 (X2 = p2 - 4q. 

Consequently, e = ±J p2 - 4q, and finally we obtain 

(Xl' (X2 = t(p±Jp2 - 4q). 

147. Cubic Equations. The first case of any complexity among the examples 
of the preceding theory is the cubic equation 

x 3 
- px2 + qx - r = O. (I) 

We assume that p, q, and r are elements of F, a number field containing the 
cube roots of unity I , p, p2 . (Since we have that 

p=-t+tN and p2=-t-tJ-3, 

it is enough that F contain J - 3.) Let E denote the splitting field of x 3 - px2 

+ qx - r = O. E is a Galois extension of F by 132, and ,§(E/F) is a per­
mutation group of the roots, (Xl' (X2, (X3 of (I). For the sake of argument we 
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shall suppose that C§(E/F) has all the permutations of OCt, oc2 , oc 3 , or in other 
words, that C§(E/F) ~ S3 and [E: F] = O(S3) = 6. Of course S3 is a solvable 
group: the composition series 

{e} cA 3 cS3 

has cyclic factors A3 of order 3 and S3 /A3 of order 2. Let B denote the fixed 
field of A 3 , that is, the subfield of E which remains fixed under all even permu­
tations of OCt, oc2 , oc 3 • Now A3 is a normal subgroup of S3' and consequently, B 
is a Galois extension of Fwith C§(B/F) ~ S3 /A3 and [B: F] = 2. Clearly, 

~ = (OCt - O(2)(OC2 - O(3)(OC3 - OCt) 

is an element of B. Since permutations of OCt, OC2, OC 3 carry ~ to ±~, they leave 
~2 fixed and therefore ~2 E F. We can compute ~2 in terms of the elementary 
symmetric functions of OCt, oc2 , OC3 using the fact that 

OCt + OC 2 + OC 3 = p, 

OCt OC2 + OC2 OC 3 + OC 3 OCt = q, 

OC t OC2 OC3 = r. 

In fact we have, after a lengthy computation (given below), 

(2) 

Clearly, B = F(~) and every element of B can be written in the form u + v~ 
where u, v E F. Now E is a Galois extension of B with Galois group C§(E/B) ~ 
A 3 , a cyclic group of order 3. The Lagrange resolvents for OCt are given by 

(1, OCt) = OCt + OC2 + OC 3 = p, 

(p, OCt) = OCt + POC2 + P2OC 3 , 

(p2, OCt) = OCt + P2OC2 + POC3' 

(3) 

(We have assumed the choice of a generator for C§(E/B) which cyclically 
permutes OCt, oc 2 , oc 3 .) The cubes (p, OC t )3 and (p2, OC t )3 are elements of B which 
we compute as follows: 

(p, OCt? = oc~ + oci + oc~ + 3p(OC~OC2 + oc~ OC 3 + oc~ OCt) 

+ 3 p 2(OC t oc~ + OC2 oc~ + OC3 ocD + 60ct OC 2 OC3 

= (OCt + OC 2 + O( 3)3 + (3p - 3)(OC~OC2 + oc~ OC3 + oc~ OCt) 

+ (3p2 - 3)(octoc~ + OC2OC~ + oc3ocD (4) 

= p3 - ~(OC~OC2 + OC~OCt + OC~OC3 + OC2OC~ + OC~OCt + octocD 

+ tJ=3(OC~OC2 - oc~ OCt + oc~ OC 3 - OC 2 oc~ + oc~ OCt - OCt ocD 

(p, OCt )3 = p3 - ~(pq - 3r) - tJ=3~. 
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Similarly, we may compute 

Next, we note that 

(p, (XI)(p2, (XI) = (Xi + (X~ + (X~ + (p + p2)((XI(X2 + (X2 (X3 + (X3 (XI) 

=pZ _ 3q. 

Finally to write the solutions of (I), we let el be'any one of the three cube 
roots of 

p3 - ~(pq - 3r) - tRIl 

and determine e2 by 

ele2 = p2 - 3q. 

If we set (p, (XI) = el and (p2, (XI) = e2' then we have 

and consequently, 

(1, (X3) = (1, (X2) = (1, (XI) = p, 

(p, (X2) = p2(p, (XI) = p2el' 

(p2, (X2) = p(P2, (XI) = pe2 , 

(p, (X3) = pep, (XI) = pel, 

(p2, (X3) = p2(P, (XI) = p2e2' 

(XI = t(P + el + e2)' 

(X2 = t(P + p2el + pe2), 

(X3 = t(P + pel + p2e2)' 

(5) 

Although our argument was motivated by the assumption that ~(E/F) :::::: S3' 
all the computations involved are completely general, and therefore the equa­
tions (5) represent the solutions of the general cubic equations (1). 

Remarks. For the special case in which p = 0 in (1), the formulas of (5) 
become much simpler: 

where the cube roots are varied and the product of the two terms is always 
- q/3 for any root. This equation is known as Cardan's Formula. The general 
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case can always be reduced to this special one by the substitution x = X + pl3 
in (I). 

Computation of the Discriminant, ~ 2 • The quantity 

is called the discriminant because it vanishes whenever two of the roots 
(Xl' (X2' (X3 are equal. To derive formula (2) above, we observe that ~ can be 
expressed as Vandermonde's determinant: 

(Xl (Xi 

~ = det (Xl (X2 (X3 = det (X2 (X~ , 

(Xi (X~ (X; (X3 (X; 

and therefore ~2 can be expressed as the determinant of the product of the 
two matrices. In other words, 

1ro 1r1 1r2 

~2 = det 1t1 1t2 1t3 

1t2 1t3 1t4 

where 1t; = (Xl + (X~ + (X; . Now we have (13lot and 13lP), 

1to = 1 + 1 + 1 = 3, 

1t1 = (XI + (X2 + (X3 = p, 

1t2 = (Xi + (X~ + (X; = p2 - 2q, 

1t3 = (X~ + (X~ + (X~ = p3 - 3pq + 3r, 

1t4 = (X1 + (X~ + (X; = p4 - 4p2q + 4pr + 2q2, 

Substituting these values into the expression above for ~2 will yield equa­
tion (2). 

l47cx. Verify that the substitution x = X + pl3 in 

x 3 
- px2 + qx - r = 0 

yields an equation of the form 

X 3 + QX-R =0. 

l47p. Derive Cardan's formulas from the solution of the cubic given by the 
formulas (5). 
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147y. Use the method of 147 to solve the following cubic equations over Q: 

x 3 
- x 2 

- X + 2 = 0, 

x 3 
- 6x2 + llx - 6 = 0, 

x 3 + X + 3 = O. 

1470. Devise cubic equations over Q whose Galois groups have orders I, 2, 
3, and 6. 

147£. Prove that a cubic equation over Q has three real roots if d 2 > 0 and 
one real root if d 2 < O. 

147~. Let/be a polynomial of degree 3 irreducible over Q. Prove that the 
splitting field of/is Q(d, cx) where d 2 is the discriminant of/and cx is one of 
its roots. 

147". Show that a cubic equation irreducible over Q with three real roots 
cannot be solved by real radicals alone. 

148. Quartic Equations. Let E denote the splitting field of the quartic 
equation 

(I) 

over F, a number field containing the cube roots of unity. Just as with the 
quadratic and cubic equations, we shall assume that C§(EfF) contains all 
permutations of the roots cx l , cx2 , CX3, CX4 of (I), or in other words, that 
C§(E/F) ~ S4 and [E: F] = O(S4) = 24. 

S4 has A4 as a normal subgroup, and A4 has a normal subgroup N con­
taining the identity e and (12)(34), (13)(24), (14)(23). N is abelian, and 
therefore the subgroup K containing e and (I~:..l(34) is normal. Thus, S4 has 
a composition series with cyclic factors: 

{e}cKcNcA 4 cS4 · 

We take B I , B2 , and B3 to be the fixed fields of A 4 , N, and K, respectively. 
As in the case of the cubic equation, Bl = F(d), where 

d = (cxl - CX 2)(CXI - CX3)(CX I - CX4 )(CX2 - CX 3)(CX 2 - CX4)(CX3 - cx4 ), 

and d 2 
E F. We shall not need to compute d 2-it will fall out in what follows. 

The element 81 = CX I CX 2 + CX 3 CX4 is left fixed by N and by the permutations 
(12), (34), (1324), and (1423). Hence 81 E B2 . All the permutations of S4 
applied to 81 yield only the numbers 

and 

81 = CX I CX2 + CX 3 cx 4 , 

82 = cx I cx 3 + cx 2 cx 4 , 

83 = cx l cx4 + cx2 CX3 • 
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Moreover, the elements of N are the only permutations leaving fixed all 
three numbers 8J> 82, and 83. Consequently, B2 = F(81 , 82, 83). (Why?) 
Furthermore the polynomial 

(2) 

is left fixed by S4' and its coefficients belong to F. Thus, B2 is the splitting 
field of (2) over F. (We call (2) the resolvent cubic of (1).) The coefficients P, Q, 
R may be computed as follows: 

P = 81 + 82 + 83 = 0"2(IXI, IX2' IX3' I(4) = q, 

Q = 8182 + 8283 + 8381 = pr - 4s, 

R = 8182 83 = S(p2 - 4q) + r2. 

(Details are left to the reader.) The discriminant of (2) is the quantity 

(81 - 82)2(82 - 83)2(83 - 81)2 

= (IX2 - I(3)2(IXI - I(4)2(IX3 - I(4)2(IXI - I(2)2(IXI - I(3)2(IX2 - I(4)2, (3) 

which is just the discriminant of !!2 of (1). The right-hand side of (3) may be 
computed from the formula of the preceding article. (We shall not need!! for 
the solution of (1).) Of course the roots 81, 82, and 83 of (2) may be obtained 
from the formulas of 147. 

To complete the solution of (I), we set 

~I = IXI + IX2 - IX3 - IX4 = 2(IXI + I(2) - p, 

~2 = IXI - IX2 + IX3 - IX4 = 2(IXI + I(3) - p, 

~3 = IXI - IX2 - IX3 + IX4 = 2(IXI + I(4) - p. 

Since the permutations of N either leave fixed or change the sign of each ~i' 
it follows that ~T E B2 . Direct computation shows 

Next, we note that 

~i = p2 - 4q + 481 , 

~~ = p2 _ 4q + 482 , 

~~ = p2 _ 4q + 483 • 

~I ~2 ~3 = 8(IXI + I(2)(IXI + I(3)(IXI + I(4) - 4p(IXI + I(2)(IXI + I(3) 

- 4p(IXI + I(2)(IXI + I(4) - 4p(IXI + I(3)(IXI + I(4) 

+ 2p2(3IXI + IX2 + IX3 + I(4) - p3 

= 8IX~ + 8(IX2 + IX3 + I(4)IXi + 8(IX2 IX3 + IX3 IX4 + IX4 I(2)IXI + 8IXI IX2 IX3 

- 4p[3IXi + 2(IX2 + IX3 + I(4)IXI + IX2 IX3 + IX3 IX4 + IX4IX2] 
+ 2p2(2IXI + p) _ p3 

(4) 
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= 8pIXi + 8r - 4p[lXi + 2PIXI + q - IXI{P - IXI)] 

+ 4p21X1 + 2p3 _ p3 

= 8r - 4pq + p3. 

Finally, we write out the solutions of(1). We take ~1' ~2' ~3 to be the square 
roots indicated by (4), in such a way that ~1~2 ~3 = 8r - 4pq + p3, and we set 

IXI = t{P + ~l + ~2 + ~3)' 
1X2 =!(p + ~l - ~2 - ~3)' 

1X3 = t(p - ~l + ~2 - ~3)' 

1X4 = t{P - ~l - ~2 + ~3)' 

(5) 

149. Quintic Equations. Unlike quadratic, cubic, or quartic equations, 
quintic equations are not in general solvable by radicals. To show this it is 
enough to give an example. We choose the polynomial 

Ix = 2x5 
- lOx + 5, 

which is clearly irreducible over Q by the Eisenstein criterion (107). Let E 
denote the splitting field of lover Q. The Galois group <fJ(E/Q) is a permuta­
tion group of the roots lXI' 1X 2 , 1X3, 1X4 , 1X5 of I (132) and is therefore isomor­
phic to a subgroup of S5 . In fact, we shall show that <fJ(E/Q) ~ S5' 

First we remark that <fJ(E/Q) must be a transitive permutation group of the 
roots off In other words, given two roots IX; and IXj , there is some ¢ E <fJ(E/Q) 
such that ¢(IX;) = IXj . If this were not the case, then the polynomial 

gx = (x - IXI)(X - IX') ... (x - IX"), 

in which lXI' rt.', ... , rt." are the distinct images of rt.l under <fJ(E/Q), would be 
fixed by <fJ(E/Q) and have coefficients in Q. What is more, g would be a 
proper divisor off, contradicting irreducibility off 

By elementary techniques of the calculus, we may sketch the graph of tf, 
which has the same roots as f From Figure 16 we see that I has three real 
roots, which we callIX3 , 1X4 , and rt.5 . The other roots, IXI and 1X2 , must be com­
plex and conjugate. 

The automorphism of C which carries each complex number a + hi to its 
complex conjugate, a - hi, simply interchanges rt.l and rt.2 and fixes 1X3, 1X4 , rt.5 • 

Consequently, it restricts to an automorphism ¢ of E = Q(rt. l , rt.2, 1X3, rt.4, rt.5)' 

Clearly, 4> E <fJ(E/Q). 
Now we have that <fJ(E/Q) is isomorphic to a subgroup H of S5, which is 

transitive and which contains the transposition (1,2). By 86, H = S5 and 
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( - I, +2.6) 

- 2 

(+1, - .6) 

Graph of tf = *x' - 2x + 1 

Figure 16 

<§(E/Q) ~ S5' By 84 it follows that <§(E/Q) is not solvable. Consequently, the 
equation 

2x 5 
- lOx + 5 = 0 

is not solvable by radicals according to 145. 

1491X. Construct a polynomial of degree 7 which is irreducible over Q and 
not solvable by radicals. 

149~. Prove that for any prime p > 3 there exists a polynomial! of degree p 
which is irreducible over Q and not solvable by radicals. 
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Chapter 5 
A ring is an algebraic structure with two operations, addition and multipli­

cation, but without all the properties required of those operations in field 
structure. Specifically, it is not required that every nonzero element of a ring 
have a multiplicative inverse. If we think of field structure as an abstraction 
of the properties of the set of rational numbers, then we should think of ring 
structure as an abstraction of the properties of the set of integers. 

In this chapter we present the elementary theory of rings for commutative 
rings with unity. The main aim of this presentation is the proper abstract 
setting for unique factorization theorems like those for natural numbers (24) 
and polynomials (104) . To show that this effort is worthwhile, the theory is 
applied to a special case of Fermat's last theorem (175). 

Definition and 
Examples of Ring Structure 

150. A ring is an additive abelian group with an operation (written multipli­
catively and called the ring product) which assigns to each ordered pair (a, b) 
of elements of R an element ab of R in such a way that: 

145 
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(1) multiplication is distributive over addition; that is, for any three elements 
a, b, c E R, 

a(b + c) = ab + ac and (a + b)c = ac + bc; 

(2) multiplication is associative; that is, for any three elements a, b, c E R, 

a(bc) = (ab)c; 

(3) multiplication is commutative; that is, for any two elements a, b E R, 

ab = ba; 

(4) there exists a unity element I E R such that la = a = al for every 
element a E R. 

Remarks. It is customary to require only conditions (I) and (2) in the 
definition of ring structure. In this case, an object satisfying all the conditions 
of the definition above is called a commutative ring with unity. Our investiga­
tion of ring theory will be confined to such objects, and use of the definition 
above avoids tiresome repetition of the phrase "commutative ring with 
unity." 

150a. Indicate which of the following sets are rings. Unless otherwise speci­
fied, addition and multiplication are to be interpreted in the usual sense. For 
those which are not rings, specify which property of ring structure fails to 
hold. 

(a) The set of integers, Z . 
(b) The set of even integers, 2Z. 
(c) The set of congruence classes mod n, Zn. 
(d) The set of rational numbers, Q. 
(e) The set of positive rational numbers, Q+. 
(f) The set of real numbers, R. 
(g) The set of complex numbers, C. 
(h) The set of imaginary numbers. 

(i) The set Z(.j=3) of numbers a + b.j=3 where a, b E Z. 
(j) The set F [x] of polynomials in x over a field F. 
(k) The set of polynomials over Z . 
(1) The set of primitive polynomials over Z (105). 

(m) The set of all 2 x 2 matrices with real entries. 
(n) The set of all continuous functions from R to R. 
(0) The set of all power series with real coefficients. 
(p) The set of all rational numbers with denominators not divisible by a 

given prime. 
(q) The power set 2x (14) of a set X, with union as addition and inter­

section as multiplication. 
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(r) The power set 2x of a set X, with the symmetric difference as addition 
and intersection as multiplication. 

(s) The set 8'(G) of endomorphisms (60) of an abelian group with addition 
defined by (cfJI + cfJ2)g = (cfJlg) + (cfJ2g), and with composition as 
multiplication. 

(t) The set of integers Z with addition EB and multiplication ® defined by 

a EB b = a + b + 1 and a ® b = ab + a + b. 

150p. An algebraic structure satisfying the definition of ring structure except 
for commutativity of the product (statement (3) of 150) will be called a 
noncommutative ring. If R is a noncommutative ring, let a new multiplication 
on R be given by a * b = ab + ba for every pair of elements a, b E R. When 
is R with this new multiplication a ring as defined in 150? 

1501. An algebraic structure satisfying the definition of ring structure except 
for the existence of unity (statement (4) of 150) will be called a ring without 
unity. If R is a ring without unity, define addition and multiplication on the 
set Z x R by 

(m, a) + (n, b) = (m + n, a + b) 

and 

(m, a)(n, b) = (mn, mb + na + ab). 

Show that Z x R is a ring with these operations and has a unity. 

151. The additive identity element of a ring is called the zero (element) and 
denoted O. The multiplicative identity element is called the unity (element) and 
denoted 1. The additive inverse of an element a is written -a. Clearly, 
Oa = 0 and (-l)a = -a for any ring element a. 

A set with a single element has a unique addition and multiplication under 
which it is a ring. Such a ring is called trivial or null. We write R = 0 to indicate 
that a ring R is trivial. In a trivial ring 1 = 0, which is to say, unity and zero 
coincide. A nontrivial ring must contain some nonzero element a, and since 
la = a -=I 0 = Oa, we conclude that I -=I O. To summarize: a ring is trivial if 
and only if unity is zero. 

In a nontrivial ring a nonzero element a may have a multiplicative inverse, 
that is, there may exist an element a-I such that aa- l = I = a-lao Such an 
element is called a unit of the ring. Clearly, the set of units in a ring forms a 
group under the ring product, and this group is called the group of units of 
the ring. A nonzero element which has no multiplicative inverse will be 
called a proper element. Thus, the elements of any ring are divided into three 
classes: zero, units, and proper elements. 
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A field is just a nontrivial ring in which every nonzero element is a unit, 
or equivalently, afield is a nontrivial ring without proper elements. Had we 
defined ring structure before taking up fields, this would have been our de­
finition of field structure. 

151cx. Show that commutativity of addition in 150 is a redundant assump­
tion by expanding (a + I)(b + I) in two ways. 

151p. Show that commutativity of multiplication in a ring is equivalent to 
the assumption that (a + b)2 = a2 + 2ab + b2 for every pair of ring elements 
a, b. 

1511. Show that the unity element of a ring is unique. 

152. The following conditions on a ring R are equivalent: 

(1) if a, b E Rand ab = 0, then a = 0 or b = 0; 
(2) if a, b, c E R and a =I 0, then ab = ac implies b = c; 
(3) the set R* of nonzero elements of R is closed under ring multiplication, 

that is, a, b E R* implies ab E R*. 

A ring which satisfies one, and hence all, of these conditions is called an 
(integral) domain. Obviously, a field is an integral domain. An element a of a 
ring R is a divisor of zero if ab = 0 for some nonzero element bE R. We can 
phrase the definition as: an integral domain is a ring without divisors of zero 
(except zero itself). 

The most prominent example of an integral domain is the ring of integers 
Z. The subrings of the complex number field C form a particularly important 
class of examples, which we shall call number domains. Of course, every 
number field is a number domain. 

Remark. The word subring has the obvious meaning : a subset of a ring 
which is a ring under the inherited sum and product. It does not, however, 
enjoy the same significance in ring theory as the concept of subgroup in 
group theory. The notion of subring is much less important than that of 
ideal, to be introduced shortly (157). 

152cx. Show that a unit element of a ring cannot be a zero divisor. 

152p. Show that the product of a zero divisor and any ring element is a 
zero divisor. 

1521. Let a and b be elements of a ring whose product ab is a zero divisor. 
Show that either a or b is a zero divisor. 

1520. Give examples to show that the sum of two zero divisors need not be 
a zero divisor. 
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152£. Let RI and R2 be rings. We define addition and multiplication on the 
cartesian product RI x R2 by the rules 

and 

Verify that RI x R2 with these operations is a ring. (The ring obtained this 
way is called the direct product of RI and R2 and denoted RI x R2.) Is the 
direct product of integral domains an integral domain? 

153. The Ring of Integers Modulo n. We already know (33) that Zn, the 
set of congruence classes modulo n, is an abelian group under the addition 
[a]n + [b]n = [a + b]n· For n = 1, Zn is a trivial group. Ifn > 1 and multiplica­
tion in Zn is defined by [a]n[b]n = [ab]n, then Zn is a ring as the reader will 
easily verify. From 89 we recall that Zn is a field if n is prime. If n is composite, 
say n = ab, then [a]n f:. 0 f:. [b]n' but [ab]n = [n]n = [0] •. Thus, for n composite 
Zn has divisors of zero and is not a field nor even, an integral domain. The 
argument of 34 shows that the group of units of Zn is just the group Z~. 

15301. Show that the ring Zmn is isomorphic to the direct product Zm x Z. 
when (m, n) = 1. (152£ contains the definition of direct product, and 165 
the definition of isomorphism.) 

154. The Ring of Gaussian Integers. Let Z(i) denote the set of complex 
numbers a + bi in which a and b are integers. Under the usual addition and 
multiplication of complex numbers, Z(i) is a ring. The elements of Z(i) are 
called Gaussian integers after Gauss, who first studied them as a generalization 
of the ordinary integers. Since Z(i) is a subring of the field Q(i), it has no 
divisors of zero. In other words, Z(i) is an integral domain. Note that the 
units of Z(i) are ± 1 and ±i. 

155. Kummer Rings. Let p be a prime and let 1, " C2, . . . , (p -I denote the 
p-th roots of unity with C = e2ni

/
p

• We shall denote by Z(O the smallest sub­
ring of C containing all the elements of Z and C. It is immediately apparent 
that Z(C) contains all the complex numbers which can be written in the form 

where ao , aI, ... , ap _ 1 E Z. Since Z(O c Q(O, it follows that Z(O is an 
integral domain. It is easy to see that the numbers ± 1, ±" ... , ± Cp

-
I are 

units of Z(O, but at this point it is not easy to see whether there are others. We 
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shall call Z(O a Kummer ring after the mathematician E. E. Kummer (1810-
1893), who studied the problem of unique factorization for these domains. 

156. Polynomial Rings. For any ring R the set of polynomials in the 
variable x with coefficients in R is a ring under the usual addition and multi­
plication of polynomials. We denote this ring by R[x]. To give a precise status 
to R[x], we shall adopt the following more formal definition. 

Let N denote the set of nonnegative integers {O, 1,2, ., .}. A polynomial f 
over the ring R is a mapping f: N -+ R which has the value 0 for all but a 
finite number of elements of N. We letfk denote the value off on kEN. (Of 
course we are secretly thinking of f as fo + fl X + f2 x 2 + ... + J. x" with 
h = 0 for k > n.) Now R[x] denotes the set of all such polynomials over R. 
Addition and multiplication of elements of R[x] are defined by 

k 

(f + g)k = fk + gk and (fg)k = I figk- i' 
;=0 

If f E R[x] and fk = 0 for all kEN, we write f = O. If f #- 0, then we may 
define the degree off by 

degf = max{k E N Ih #- O}. 

Finally, we observe that we may identify R with a subring of R[x] by letting 
a E R correspond to f E R[x], where fo = a and fk = 0 for k > O. 

This definition of R[x] has the advantage that elements of R[x] are defined 
as genuine mathematical entities and not as "expressions of the form ... ". 
It also has the advantage of allowing explicit definitions of addition and 
multiplication. Moreover, it generalizes easily to polynomials in several 
variables: a polynomial in n variables over R is simply a mapping 

f: N x ... (n) ... x N -+ R 

which has the value 0 on all but a finite number of elements of its domain. 
On the other hand, this formal definition of R[x] has no real relation to 

the variable x. Another difficulty is that from force of habit we simply do not 
imagine a polynomial over R as a mapping from N to R. 

Regardless of the manner in which R[x] is defined, we may define the 
polynomial ring over R in two or more variables inductively by R[xl , X2] = 

(R[xd)[X2]' and so forth. 

Proposition. If R is an integral domain, then R[x] is also an integral domain. 

Proof. Iff, g E R[x] andfg = 0, thenfogo = 0 in R. Therefore, since R is 
an integral domain, either fo = 0 or go = 0 (or both). Suppose that fo = O. 
Then it follows from 
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(fg)1 = flgo + fogl = flgo = 0 

that either;; = 0 or go = O. Continuing in this manner, we are forced to the 
conclusion that either f = 0 or 9 = O. 

Alternatively, we might suppose that fj and gj are the first nonzero coeffi­
cients of the polynomials f and g. Then (fg)j + j = fjgj =f. 0, which shows that 
fg =f. O. Thus the product of nonzero polynomials in R[xl is nonzero. 

Corollary. If R is an integral domain, then R[x! , x 2 , .. . , xnl is also an 
integral domain. 

156<x. Determine the group of units of R[x]. 

156p. What conditions on R will insure that deg (fg) = degf + deg 9 for 
any two polynomials f, 9 E R[x l? 

156y. The ring of power series R[[xll over a ring R is the set of all mappings 
f: N -+ R with the same rules of addition and mUltiplication as given above 
for R[x]. Determine the group of units of R[[xll. 

Ideals 

157. An ideal of a ring R is an additive subgroup a of R with the property 
that r E R and a E a imply ra Ea. Clearly, the set containing the single element 
o and the set consisting of the whole ring R are ideals. An ideal a is called 
proper if a =f. {O} and a =f. R. 

157<x. Prove that the intersection a n b of two ideals a and b of a ring R 
is again an ideal of R. 

157p. Prove that an ideal containing a unit element is the whole ring. 

158. For each element a of a ring R, the set 

(a) = {x E R I x = ra, r E R} 

is an ideal, called the principal ideal generated by a. It is easy to see that the 
principal ideal (a) is the smallest ideal containing a. In other words, if a is 
an ideal of R and a E a, then (a) c a. We note that (I) = R and consequently, 
1 E a implies Rca, or what is the same thing, a = R. An element a E R is 
clearly proper if and only if (a) is a proper ideal of R. 
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The integral domains in which every ideal is a principal ideal are of 
exceptional importance in ring theory. For brevity we refer to these integral 
domains as principal ideal domains. A field F can have only the improper 
ideals (0) and (1) = F. (Why?) Therefore a field is automatically a principal 
ideal domain. Fields, however, are the least interesting examples of principal 
ideal domains. The primary example of such a domain is Z, the ring of 
integers. To see this, we recall that every additive subgroup of Z has the form 
mZ (36) and observe that mZ is just the principal ideal (m). 

ISBa. Show that an element a of a ring R is a unit if and only if (a) = R. 

158Jl. Show that (a) c (b) if and only if a = rb for some r. 

1581. Show that (a) = (b) if and only if a = ub for some unit element u. 

158/). Prove that in the ring of integers Z, (m) n (n) = ([m, n]), where 
[m, n] denotes the least common multiple of m and n (231). 

158£. Let a and b be elements of a ring R. Show that the set 

c = {x E R I x = ra + sb; r, s E R} 

is an ideal of R and that it is the smallest ideal of R containing (a) and (b). 

158~. Let a and b be elements of a domain R. Show that the set 

c = {x E R I ax E (b)} 

is an ideal of R. 

15811. Prove that every ideal of the ring Zn is principal. Is Zn a principal 
ideal domain? 

1589. Show that for n> I the ring of polynomials R[x1, X2, ... , xn] over 
a domain R is not a principal ideal domain. 

159. A euclidean domain is a nontrivial integral domain R together with a 
function, called the norm, b: R* --+ N (where R* denotes R - {O}), such that 

(1) for all a, b E R*, b(ab) = (ba)(bb), 
(2) for all a, b E R* there exist elements q, r E R such that a = qb + r 

where br < bb or r = O. 

It clearly follows from 21 that the ring of integers Z is a euclidean domain 
setting ba = lal (absolute value). From 99 we see that the ring of polynomials 
F[x] over a field F is a euclidean domain with b! = 2deg f for!"# O. Now we 
give a fresh example. 
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Proposition. The ring of Gaussian integers Z(i) together with the function 
8 : Z(i)* -> N defined by 8(u + vi) = u2 + v2 is a euclidean domain. 

Proof. First, we observe that 

8(u + vi) = u2 + v2 = (u + vi)(u - vi) = lu + vil 2. 

Consequently, for ex, 13 E Z(i), we have 

Thus, (I) holds. To see that (2) holds, we use a little trick. Z(i) is a subring 
of the field Q(i). Thus, ex, 13 E Z(i) implies ex/f3 E Q(i), that is, ex/f3 = u + vi for 
u, v E Q. Let p be the integer nearest u, and q the integer nearest v. Let 
y = p + qi E Z(i). Now we have ex = yf3 + p where 

8p = If3«u - p) + (v - q)iW = 1131 2 «u - p)2 + (v - q)2) ~ G) 813, 

since lu - pi ~ 1/2 and Iv - ql ~ 1/2. 

Proposition. A euclidean domain is a principal ideal domain . 

Proof. Let b be a proper ideal of a euclidean domain R. Then among all 
the elements ofb II R* there is (at least) one, say b, for which 8b is a minimum. 
If a E b II R*, then a = qb + r for some q, r E R. Since r = a - qb E b, we 
cannot have 8r < 8b due to the choice of b. Therefore r = 0 and b I a for any 
a E b, or in other words, b c (b). However, (b) c b since b E b, and as a result, 
b = (b). This shows that R is a principal ideal domain. 

Corollary. The ring of polynomials F[x] over a field F is a principal ideal 
domain. 

159cx. Show. that the ring Z(w), where 

w = e2
•

i
/
3 = -t + tJ -3 

is a euclidean domain with 8(a + bw) = a2 - ab + b2. 

159p. Let R be a euclidean domain. We shall say that dE R is a greatest 
common divisor of the elements a, b E R (not both zero) if c I a and c I b 
imply that c I d for any c E R . Show that any pair of elements a, b E R (not 
both zero) must have a greatest common divisor d, which can be written as 
ra + sb for some r, s E R. (We interpret divisor in the usual sense: r I t if and 
only if r = sl for some s.) 



154 5 Ring Theory 

159y. Let Z(j=3) denote the ring of complex numbers of the form 

a + bj=3 where a, b E Z. Let b(a + bJ -3) = a2 + 3b2. Is Z(J -3) a 
euclidean domain? Is it a principal ideal domain? 

1590. Show that an element u of a euclidean domain is a unit if and only if 
b(u) = I. 

160. The sum of two ideals a and b of a ring R is the ideal 

a + b = {x E R I x = a + b, a E a, bE b}. 

(It must be verified that the set a + b defined above is an ideal of R, but this 
is routine.) Since every element a E a can be written as a + 0 and 0 E b, it 
follows that a c a + b. Similarly, b c a + b. In fact a + b is the smallest 
ideal of R containing both a and b, which is to say, ace and bee imply 
a+bcc. 

1600(. Prove the following properties of the sum of ideals: 

(a) (a + b) + c = a + (b + c), 
(b) a + (0) = a = (0) + a, 
(c) a + (1) = (1) = (1) + a, 
(d) a + b = b + a. 

160~. Show that 

a n (b + c) => (a n b) + (a n c) 

and 

a + (b n c) c (a + b) n (a + c) 

for any three ideals a, b, c of a ring R. 

160y. Let (ai, a2 , ... , an) denote the smallest ideal of a ring R containing 
the elements ai' a2 , ... , an E R. Prove that 

(ai, a2 , ... , an) = (a l ) + (a2) + ... + (an)· 

1600. Show that, in the ring of integers Z, (a) + (b) = (d) where d is the 
greatest common divisor of a and b. 

161. The product ab of two ideals a and b of a ring R is the smallest ideal of 
R containing all products of the form ab where a E a and b E b. If ai' a2 , ... , 
anEa and b l ,b2 , ... ,bnEb, then a l b l ,a2b2 , ... ,anbnEab, and conse­
quently, the sum 

n 

I ajb j = albl + a2b2 + ... + anbn 
j= 1 

(1) 
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is an element of abo In fact we could define ab as the set of all sums of the 
form (1). (Simple products albl are included under the case n = 1.) 

1611X. Prove the following properties of the product of ideals: 

(a) a(be) = (ab)e, 
(b) a(l) = a = (I)a, 
(c) ab = ba, 
(d) ab c (a II b), 
(e) (a)(b) = (ab). 

161p. Prove that the product of ideals is distributive over the sum of ideals; 
that is, 

a(b + e) = ab + ae 

for any three ideals a, b, e of a ring R. 

1611. Show that a(b II e) c ab II ae for ideals of a ring R. 

1610. Show that a + b = R implies a II b = ab for ideals a, b of R. 

16h:. If a and b are ideals of a ring R, then we define their quotient to be 
the set 

a: b = {x E R I xb E a for all bE b}. 

Show that the quotient of two ideals is again an ideal of R. 

161~. Show that the quotient operation on ideals in a ring R has the follow­
ing properties: 

(a) (a: b)b c a, 
(b) (a: b): e = a : (be), 
(c) a: (b + e) = (a : b) II (a : e), 
(d) (a II b) : e = (a : e) II (b : e), 
(e) a: b = R if and only if be a. 

161''1. In the ring of integers Z compute the ideals: 

(a) (2) + (3), 
(b) (2) + (4), 
(c) (2) II «3) + (4», 
(d) (2)«3) II (4», 
(e) (2)(3) II (2)(4), 
(f) (6) II (8), 
(g) (6)(8), 
(h) (6): (2), 
(i) (2): (6), 
(j) (2): (3). 
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1619. Let Q[x, y] denote the ring of polynomials over the rational field Q 
in the variables x and y. Compute the ideals indicated, writing each in the 
form (fl'/Z, ... ,/.). (See 160"(.) 

(a) (x) II (y), 
(b) (x + y)Z = (x + y)(x + y), 
(c) (x, y)Z, 
(d) (XZ) II (x, y), 
(e) (XZ + xy) II (xy + yZ), 
(f) (x) + (y), 
(g) (x + 1) + (x), 
(h) (XZ + xy)(x - y), 
(i) (xz) II «xy) + (yz», 
(j) (x - y)«x) + (yz», 
(k) (xy): (y), 
(I) (x"): (xm), 

(m) (x): (y), 
(n) (x + y)z: (x), 
(0) (xy): (x, y). 

162. A prime ideal of a ring R is an ideal p such that ab E p implies a E p 
or bE P (or both). A maximal ideal of a ring R is an ideal m, other than R 
itself, such that for any ideal a of R, mea implies a = m or a = R. 

Proposition. A maximal ideal is a prime ideal. 

Proof. Suppose m is a ;naximal ideal of a ring R. If ab E m and a ¢ m, then 
the ideal (a) + m contains m as a proper subset. Since m is maximal, 
(a) + m = R. It follows that 1 = ca + m for some c E R and some m E m. 
Consequently, b = cab + mb E m. This shows that m is a prime ideal. 

162a. Prove that the ideal (n) is prime in Z if and only if n = 0, ± 1, or In I is 
prime. 

162p. Prove that every proper prime ideal of Z is maximal. 

1621. Let F be a field. Show that (f) is a prime ideal of F[x] if and only iff 
is constant or irreducible. When is (f) maximal? 

1620. Find a proper prime ideal of Q[x, y] that isn't maximal. 

163. Proposition. If a, b~ and p are ideals of a ring Rand p is a prime ideal, 
then ab c p implies a c p or b c p (or both). 
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Proof Suppose that ab c: p and a ¢. p. Choose a E a - p. For any bE b 
we have ab E ab c: p. Since p is prime and art: p, it follows that bE P for any 
b E b. Therefore b c: p. 

164. Proposition. A ring R is an integral domain if and only if(O) is a prime 
ideal, and a field if and only if (0) is maximal. 

Proof The first part of the statement is an immediate consequence of the 
definitions of integral domain and prime ideal. For the second, if R is a 
field, then R has only the ideals (0) and (1) = R, and (0) is clearly maximal. On 
the other hand, if (0) is maximal, then for a i= 0, (a) = Rand ra = 1 for some 
r E R, or in other words, a has a multiplicative inverse a-I = r. Thus, R is a 
field. 

165. A homomorphism of rings is a mapping from the set of elements of one 
ring to the set of elements of another which preserves addition, multiplication, 
and the identity element. In other words, a mapping rjJ: R -> R' is a ring 
homomorphism if Rand R' are rings and if for all a, b E R, 

(1) rjJ(a + b) = (rjJa) + (rjJb), 
(2) rjJ(ab) = (rjJa)(rjJb), 
(3) rjJ( I) = I', where 1 and I' denote the identity elements of Rand R'. 

A ring homomorphism rjJ: R -> R' is called: 

(1) a monomorphism if rjJ is one to one; 
(2) an epimorphism if rjJ is onto; 
(3) an isomorphism if rjJ is a one-to-one correspondence; 
(4) an endomorphism if R' = R; 
(5) an automorphism if R' = Rand rjJ is a one-to-one correspondence. 

Just as in the case of group homomorphisms, if rjJ is an isomorphism, then the 
inverse mapping rjJ -I preserves addition, multiplication, and the identity 
element, and is again an isomorphism. 

1651%. Let rjJ: R -> R' be a ring homomorphism. The kernel of rjJ is the set 

Ker rjJ = {x E R I rjJx = O}. 

Prove that Ker rjJ is an ideal of R. 

165p. Show that there is a unique ring homomorphism rjJ: Z -> R. The 
characteristic of R is n (positive or zero) if Ker rjJ = (n). Exhibit a ring with 
characteristic n = 0, 1, 2, .... 
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165y. Prove that the characteristic of an integral domain is 0, I, or a prime. 

1650. If char Rl = n and char R2 = m, what is char (Rl x R 2)? (See 152E 
for the definition of Rl x R2') 

165E. Determine the number of ring homomorphisms Zn -+ Zm. 

166. Proposition. If 4>: R -+ R' is a ring homomorphism and a' is an ideal 
of R', then a = 4> -la' is an ideal of R. Furthermore, if 0' is a prime ideal, then 
a is also. If 4> is an epimorphism and 0' is maximal, then a is also maximal. 

Proof. It is easy to see that a = 4> -1 a' is an additive subgroup of R. If 
a E a and r E R, then 

4>(ra) = 4>(r )4>(a) E a', 

and thus ra E o. This tells us that 0 is an ideal of R. If a' is prime and ab E a, 
then 

4>(ab) = 4>(a)4>(b) E 0' 

and either 

which proves either a E 0 or b E a. Thus, 0 is prime. 
Suppose now that a' is maximal, and that 4> is onto. If a c: b, then a' c: 4>b. 

Since 4> is an epimorphism, 4>b is an ideal of R' as the reader will easily verify. 
Since a' is maximal, we have either 4>b = 0', in which case b c: 4>-l4>b = 
4>-1 0 , = 0 and b = 0, or else 4>b = R'. In this last case, b contains an element 
b such that 4>b = I'. Then 4>(1 - b) = 0 and I - b E a c: b. Consequently, 
1 =(1 - b) + bE band b = R. We have shown that a c: b implies b = 0 or 
b = R, and therefore a is maximal. 

Remark. In the last statement of the proposition we cannot remove the 
restriction that 4> is an epimorphism. The inclusion mapping i: Z -+ Q gives 
an example: (0) is a maximal ideal of the field Q, but i-leO) = (0) is not 
maximal in Z. 

166a. Prove that every ideal of the direct product Rl x R z of two rings 
has the form a l x az where a l and az are ideals of Rl and R z , respectively. 

166p. Let 4> be a ring epimorphism from R to R'. Show that 
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and that 

where a' and b' are ideals of R' . 

167. Quotient Rings. Let a be an ideal of the ring R. We can define an 
equivalence relation on R by the rule: a == b mod a if and only if a - b E a. 
This is called congruence modulo the ideal a. (a == b mod a is read .. a is 
congruent to b modulo a.") Additively, a is a normal subgroup of R, and 
congruence modulo a is a special instance of congruence modulo a normal 
subgroup (37). This makes it unnecessary to verify that the properties (17) 
of an equivalence relation hold. 

The equivalence class of r E R is denoted r + a; that is, 

r + a = {x E R I x - rEa} 

= {x E R I x = r + a, a E a}. 

The set of all equivalence classes of elements of R under congruence modulo 
a is denoted Ria since additively it is simply the quotient group of R by the 
normal subgroup a. It is clear that Ria is an abelian group with addition 
defined by the rule 

(a + a) + (b + a) = a + b + a. 

Furthermore, Ria is a ring in which multiplication is given by 

(a + a)(b + a) = ab + a. 

The reader should demonstrate for his own satisfaction that this multiplication 
is well defined and that, furnished with these operations, Ria satisfies the 
axioms of ring structure (150). 

We note that if R is the ring of integers Z, and a is the principal ideal (n), 
then Ria = Z /(n) is the ring Zn (153). 

167(%. Let rjJ: R -> R' be a ring epimorphism. Prove that R I(Ker rjJ) is iso­
morphic to R'. (Ker rjJ is defined in 165(%.) 

167p. Show that the set of ideals of the quotient ring Ria is in one-to-one 
correspondence with the set of ideals of R containing a. 

167y. Let a and b be ideals of a ring R such that a c b. Show that the 
mapping rjJ : Ria -> Rib given by rjJ(a + a) = a + b is a well-defined ring 
epimorphism, and compute Ker rjJ. 

1670. Let a denote the ideal of Z(i), consisting of all Gaussian integers 
a + bi such that a == b mod 2. Describe the quotient ring Z(i)/a. 
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167&. Let R[O , I] denote the ring of continuous functions on the closed unit 
interval [0, 1]. Let a denote the ideal of R[O, I] consisting of all continuous 
functions f: [0, 1]-+ R such that J(1 /2) = O. Describe the quotient ring 
R[O , l]/a. 

167~. Let a and b be relatively prime ideals of a ring R, that is, a + b = R. 
Prove that 

RI(ab) ~ (Ria) x (Rib). 

168. Proposition. The quotient ring Ria is an integral domain if and only if 
a is a prime ideal. Ria is a field if and only if a is a maximal ideal. 

Proof. The mapping ¢: R -+ Ria which assigns to each element r E R its 
equivalence class ¢r = r + a in Ria is a ring epimorphism. The ideal of Ria 
containing only 0 is the equivalence class of 0 E R. In other words, in Ria, 
(0) = a, and further, ¢ -I (0) = a. 

If Ria is an integral domain, then (0) is a prime ideal of Ria (164) and 
a = ¢ - 1 (0) is a prime ideal of R (166). On the other hand, if a is a prime ideal, 
Ria cannot have zero divisors: 

(a + a)(b + a) = ab + a = a 

implies ab E a; hence, either a E a or b E a, which implies a + a = a or 
b + a = a. 

Similarly, if Ria is a field, then (0) is a maximal ideal of Ria (164) and 
a = ¢-I(O) is a maximal ideal of R (166). On the other hand, suppose a is 
maximal. An element a + a is zero in Ria if and only if a E a. If a rt a , then 
(a) + a = R because a is maximal. As a result, 1 E (a) + a, that is, I = a' a + a" 
for some a' E R, a" E a. Now we have 

(a' + a)(a + a) = a'a + a = 1 + a. 

Clearly 1 + a is the identity element of Ria and (a + a)-I = (a' + a). Since 
every nonzero element of Ria has an inverse, Ria is a field. 

Unique Factorization 

169. A factorization r = r1r2 •• • rk of an element r of a ring R is a proper 
Jactorization of r if each factor rj is a proper element (not a unit or zero) of R. 
A factorization having units or zero among the factors is called improper. 



Unique Factorization 161 

Every element r of a ring has an improper factorization r = lr, but not 
every element has a proper factorization. An element of a ring which has no 
proper factorization is called a prime. A proper element which is prime is 
called a proper prime. Clearly the unity element I is always a prime (improper), 
but the zero element 0 is a prime (improper) if and only if the ring is an 
integral domain. (Why?) 

For example, the prime elements of Z are 0, ± I, and ±p, where pEN is 
prime in the ordinary sense (22). The primes in the polynomial ring F[x] 
over a field F are the constant polynomials (improper) and the irreducible 
polynomials (proper). 

Two elements of a ring are associates if each one is a multiple of the other 
by a unit. It is not difficult to see that association in this sense is an equivalence 
relation. 

1691X. Prove that two elements of an integral domain are associates if and 
only if they generate the same principal ideal. 

169p. Prove that any associate of a prime is a prime. 

169"{. Which of the numbers 3, 5, 7, II, 13, 17, 19 are prime in the ring 

Z(J2) = {x E R I x = a + bJ2, a, bE Z}? 

170. If a and b are elements of a ring R, we say that a divides b (written a I b) 
if b = ra for some r E R. The set of all elements of R divisible by a E R is just 
the principal ideal (a). Furthermore, a I b if and only if (b) c (a). 

An element dE R is a greatest common divisor of elements a and b of R 
provided 

(a) d la and d I b, 
(b) c E Rand c I a, c I b imply c I d. 

Generally, there is not a unique greatest common divisor: if d is a greatest 
common divisor, then so is d' = ud, where u is a unit. In an integral domain R, 
any two greatest common divisors d and d' of a and barf- associates. (We 
must have did' and d' I d so that d' = rd and d = rd' = r'rd which implies 
r'r = I when d oF 0; d = 0 implies d' = rd = 0.) 

Proposition. In a principal ideal domain R, an element d is a greatest common 
divisor of two elements a and b if and only if 

(d) = (a) + (b). 

Proof. Since d I a and d I b imply (a) c (d) and (b) c (d), we have 
(a) + (b) c (d) when d is any common divisor of a and b (160). Since R is a 
principal ideal domain, (a) + (b) = (c) for some c E R and (c) c (d), implies 
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d I c. On the other hand, (a) c (c) and (b) c (c) imply c I a and c I b. Therefore, 
c I d and (d) c (c) if d is a greatest common divisor of a and b, and it follows 
that (d) = (c) = (a) + (b). 

Suppose (d) = (a) + (b). Then (a) c (d) and (b) c (d), from which we 
conclude that d I a and d I b. If c I a and c I b, then as before (a) c (c) and 
(b) c (c) so that (d) = (a) + (b) c (c), and therefore c I d. Thus, d is a greatest 
common divisor of a and b. 

It is clear from this proposition that in a principal ideal domain every pair 
of elements has a greatest common divisor. The following corollary is another 
immediate consequence of this proposition. 

Corollary. If an element d of a principal ideal domain R is a greatest common 
divisor of elements a, b E R, then there exist elements r, r' E R such that 
d = ra + r'b. 

Corollary. If P is a prime element of a principal ideal domain R, then p lab 
implies p I a or p lb. 

Proof. Suppose p I ab and P,f' a. Then I is a greatest common divisor of 
p and a. (Why?) By the prereding corollary, 

1 = rp + r'a 

for some r, r' E R. Then b = brp + r'ab is divisible by p. (This is essentially 
the same proof as given in 23 and 103.) 

170ot. An element m of a ring R is a least common multiple of two elements 
a, bE R if and only if 

(I) a I m and b I m, 
(2) a I c and b I c for any element c E R, then m I c. 

Show that m is a least common multiple of a and b in R if and only if 
(m) = (a) n (b). 

170p. Let d be a greatest common divisor and m a least common multiple 
of elements a and b of a domain R. Show that dm and ab are associates. 

171. A unique factorization ring is a ring in which the following conditions 
hold: 

(1) every proper element is a product of proper primes (not necessarily 
distinct) ; 
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(2) two factorizations of the same proper element as a product of proper 
primes have the same number of factors; 

(3) if r = PI P2 " 'Pk = qlq2 " 'qk are two factorizations of a proper ele­
ment r into a product of proper primes, then there exists a permutation 
of k letters, 1t E Sk such that Pi and q'(i) are associate primes for 
i = 1,2, .. . , k. 

It is not possible to require more than this: Given a product of proper 
primes PlP2 .•• Pk, we can select units Ul , U2 , •.• , Uk so that their product 
U l U2 • •• Uk = 1, and then for any 1t E Sk we have PlP2 ••• Pk = qlq2 •• • qk where 
q '( i) = UiPi' We note that even in the ring of integers we have twelve factoriza­
tions of 12: 

(

2 . 2 . 3 = 2 . ( - 2)( - 3) = ( - 2) . 2 . ( - 3) = ( - 2)( - 2) . 3, 
12 = 2·3·2 = 2· (-3)( -2) = (-2) . 3 . (-2) = (-2)( -3) . 2, 

3 . 2 . 2 = 3 . ( - 2)( - 2) = ( - 3) . 2 . ( - 2) = ( - 3)( - 2) . 2. 

We shall be mainly interested in unique factorization domains, that is to say, 
integral domains which satisfy (I), (2), and (3). We observe, however, that for 
P prime, Zp" is a unique factorization ring which is not an integral domain. 

17112. Prove that Zp" is a unique factorization ring (p prime). 

171p. Show that a quotient ring of a unique factorization ring need not be 
a unique factorization ring. 

172. Theorem. A euclidean domain is a unique factorization domain. 

Proof. First we remark that an element x in a euclidean domain R with 
norm 0: R* -+ N is a unit if and only if o(x) = I. Clearly o(a) = o(la) = 

o(l)o(a) implies 0(1) = I, from which it follows that a unit u has norm 1. 
because 

Now suppose o(x) = I. Then we have 1 = qx + r where r = 0, since o(r) < o(x) 
is impossible. Therefore, 1 = qx and x is a unit. 

Next we show by induction on norms that every element r E R with 
o(r) > 1 is a product of proper primes. Clearly, o(r) = 2 implies r is prime. 
Suppose that 1 < o(r) < n implies that r is a product of proper primes, and let 
o(r) = n. If r itself is a prime, then it is a proper prime and we are finished. If 
r is not a prime, then it has a proper factorization r = abo Then o(r) = o(a)o(b), 
from which we conclude that 1 < o(a) < nand 1 < o(b) < n. By the induction 
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hypothesis it follows that a = PIP2 ... Pk and b = qlq2 ... q, where the p/s 
and q/s are proper primes. Finally, we have 

and the induction step is complete. 
It remains to show that factorization is unique in the sense of 171. We 

proceed as follows. To every proper element r E R we assign a natural number 
I(r) called the length of r, by taking I(r) to be the minimum number of proper 
primes occurring in any factorization of r as a product of proper primes. 
Therefore every prime factorization of r has at least I(r) factors, and there is 
at least one prime factorization with exactly I(r) factors. Our proof is by 
induction on I(r). 

If l(r) = 1, then r is prime and cannot have a proper factorization. Thus, 
r = PIP2 ... Pk implies k = 1 and rl = PI. As the induction hypothesis we 
assume that for l(r) = k, any two factorizations of r are equivalent in the 
sense of 171. Suppose now that l(r) = k + 1 and r = PIP2 ... PHI is a 
minimum factorization of r as a product of primes. Let r = qlq2 ... qm be 
another factorization. Since Pk + I I r, it follows that Pk + I I qj for some j. 
(Why?) Then qj = UPHI' where U must be a unit since qj is prime. Now we 
divide PH lout of both factorizations, obtaining 

where r'PHI = r. Clearly I(r') = k, and these two factorizations of r' are 
equivalent by the induction hypothesis. It follows that the two factorizations 

were equivalent. 

Corollary. The rings Z, Z(i), and Zero) where ro = e2ni/3 are unique factoriza­
tion domains. (See 159 and 159a.) 

Corollary. IfF is afield, then the polynomial ring F[xl is a unique factorization 
domain. (This is the theorem of 104.) 

173. The set J R of ideals of a ring R may be considered as an algebraic 
structure urider the product of ideals defined in 161. This product is associative 
and has an identity, namely the ideal (1) = R. (An algebraic structure of this 
type is called a monoid.) 

Let ¢: R .... J R denote the mapping which assigns to each element a E R 
the principal ideal (a) E JR. Ring multiplication makes R a monoid, and ¢ 
may be viewed as a "homomorphism of monoids," that is to say, 
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¢(ab) = (¢a)(¢b). To see this, we note that ab E (a)(b), which shows that 
(ab) c (a) (b) ; on the other hand, (ab) contains all the products of the form 
a'b' where a' E (a), b' E (b), which shows that (a) (b) c (ab). Thus, ¢(ab) = 

(ab) = (a)(b). 
Obviously R is a principal ideal domain if and only if the mapping ¢ is 

onto. Furthermore, two elements a, b E R are associates if and only if they 
have the same image under ¢, that is, (a) = (b). (See 1691X). The group of 
units of R is just U = ¢ -1(1). An element a E R is proper if and only if (a) 
is a proper ideal. 

Lemma. An element pER, a principal ideal domain, is a prime if and only if 
the ideal ¢p = (p) is a prime ideal. 

Proof. Suppose p is prime. [f ab E (p), then ab = rp for some r E R, and 
pi abo By the second corollary of 170, we have P I a or pi b, from which we 
conclude that a E (p) or bE (p). Thus (p) is prime. 

On the other hand, suppose (p) is a prime ideal. If p = ab, then ab E (p). 
Consequently, a E (p) or b E (p). However, a E (p) implies a = pr = abr, from 
which it follows that br = 1 and that b is a unit. Similarly, bE (p) implies 
that a is a unit. We see that p has only improper factorizations and is therefore 
prime. 

Theorem. Every proper ideal of a euclidean domain can be factored uniquely 
(except for the order of the factors) as a product of proper prime ideals. 

Proof. Let R be a euclidean domain. If a >= PIP2 ... Pk is a factorization 
of the proper element a ERas a product of proper primes, then (a) = 

(PI)(P2) ... (Pk) is a factorization of the ideal (a) E J R as a product of prime 
ideals. Thus the unique factorization theorem for elements (172) implies 
factorization of ideals. Suppose now that (a) = (ql)(q2) ... (q,) is a second 
factorization of the proper ideal (a) as a product of proper prime ideals of R. 
Since (a) = (qlq2 ... q,), the elements a and qlq2 ... q, are associates. In other 
words, a = uqlq2 ... q, for some unit u E R. The ideals (uql) = (ql) and 
(q2), (q3)' ... , (q,) are prime, and by the lemma above, the elements uql, q2, 
... , q, are primes. As a result 

a = P1P2 ... Pk = (Uql)q2 ... q" 

and we have two factorizations of a as a product of primes. Now it follows 
from 172 that 1= k and that there is a permutation of k letters, 1! E Sk, such 
that qi and Pn(i) are associates. This implies that (q;) = (Pn(i)) for i = 1,2, ... , k. 
Clearly the factorizations 

(a) = (Pl)(P2) ... (Pk) = (ql)(q2) '" (qk) 

are the same except for the order of the factors, which completes the proof. 
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This unique factorization theorem for ideals is a more natural result than 
the unique factorization for elements preceding it-first, because it is much 
easier to say what uniqueness means, and second, because there is a very large 
class of rings which have unique factorization of ideals but not of elements. 

(An example of such a ring is Z(J - 5), which is discussed in the exercises 
below.) In other words, we can generalize the theorem just proved to rings 
which are not euclidean nor even principal ideal domains. This involves a 
more thorough study of ideals than we have made and will be carried out in 
the next chapter. 

173a. Prove that in a principal ideal domain every proper prime ideal is 
maximal. 

173p. Let Z(,f~) denote the set of complex numbers of the form 

a + bN with a, b E Z. Show that ZeN) is .a ring under the usual addi­
tion and multiplication of complex numbers. 

1731. For a + bR E Z(R) define the norm of a + bJ -5 to be 

N(a+ bR) = la + bRI = a2 + 5b 2 

so that N(a{J) = (Na)(N{J) for all a, (J E Z(R). Using this norm, determine 

the units of ZeN) and show that 2, 3, and 1 ± J - 5 are proper primes in 

Z(R). (Then 6 has two inequivalent factorizations, 6 = 2 . 3 and 

6 = (1 + J - 5)(1 - R), so that Z(J -5) is not a unique factorization 
ring.) 

1731). Let p denote the set of elements of Z(R) of the form a + bR' 
with a == b mod 2. Show that p is a maximal prime ideal of Z(R). Show 

further that p = (2, I + J - 5) and that p2 = (2). (p2 is just the product pp.) 
Show that p is not a principal ideal. 

174. As an illustration of the preceding articles, we examine in detail 
factorization in the domain of Gaussian integers, Z(i). We recall that Z(i) 
consists of all complex numbers a + bi where a and b are ordinary integers. 
The units of Z(i) are ± i and ± 1. Now Z(i) is a euclidean domain (159), and 
consequently a principal ideal domain and a unique factorization domain 
(172) . 

The primes of Z(i) are called Gaussian primes. We observe that 
z = a + bi E Z(i) is a Gaussian prime if and only if its complex conjugate 
Z = a - bi is also a Gaussian prime. Indeed, z has a proper factorization 
z = uv if and only if z has the conjugate factorization z = fiv, which is also 
proper. Of course it may happen that a = 0 or b = 0 in which case z = + z 
and z and z are associated primes. - , 
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Suppose z = a + bi is a proper Gaussian prime and a '" 0 '" b. In this case 
we claim that z z = a2 + b2 is a prime in the ordinary sense. If not, then 
a2 + b2 = mn where m, n E Nand m '" 1 '" n. Furthermore, we may assume 
that z and z are relatively prime: otherwise they must be associates, which 
implies that a = ±b = ± 1 and a2 + b2 = 2; in this case we are finished since 
2 is prime. Since z is prime and z I (a 2 + b2

), we must have z I m or z I n (170). 
However, z I m implies m = zw and, since m is real, m = m = ZW, so that 
z I m . Furthermore, z and z are relatively prime, and therefore z I m and z 1m 
imply zz I m and m = a2 + b2

, n = I. The assumption z I n leads likewise to 
the conclusion n = a2 + b2

, m = 1. These are contradictions and a2 + b2 is 
prime. • 

On the other hand, if z = a + bi is a Gaussian integer with a2 + b2 a proper 
prime of Z, then z is a Gaussian prime. This is easy to show: z = uv implies 
z = iiv, from which it follows that 

a2 + b2 = ZZ = (uv)(iiv) = (uii)(vv), 

which gives a factorization in Z of a2 + b2
, which was assumed prime. To 

sum up, we have seen that a Gaussian integer a + bi with a '" 0 '" b is a (proper) 
Gaussian prime if and only if a2 + b2 is a (proper) prime of Z. 

Clearly other proper primes of Z(i) must have the form ± p or ± ip where p 
is a prime in the ordinary sense and p '" a2 + b2 for any integers a and b. 
These primes are characterized by the following result. 

Theorem. A positive proper prime p E Z is a proper Gaussian prime if and 
only if p == 3 mod 4. 

Proof. Let p be a positive proper prime of Z. We make use of the ring 
Zii) of elements a + bi where a, b E Zp with addition and multiplication 
given by 

(a + bi) + (c + di) = (a + c) + (b + d)i 

and 

(a + bi)(c + di) = (ac - bd) + (ad + bc)i. 

A ring epimorphism ¢: Z(i) -+ Zii) is given by 

where [x]p denotes the congruence class of x modulo p. Obviously Ker ¢ = (p), 
the principal ideal of Z(i) generated by p. As a result, Zp(i) is isomorphic 
to the quotient ring Z(i) j(p). (See 167ot.) Likewise there is a ring epimor­
phism ifJ: Zp[x] -+ Zii) given by ifJ(f) = f{i) for any polynomial f over Zp. 



168 5 Ring Theory 

The kernel of", is easily seen to be (x2 + 1), the principal ideal of Zp[xJ gen­
erated by x 2 + I. Consequently, ZP(i) is isomorphic to the quotient ring 
Zp[XJ/(X2 + J). We can summarize what we have proved so far in the state­
ment: 

From this we see that the eight statements below are equivalent: 

(1) p is prime in Z(i); 
(2) (p) is a maximal prime ideal of Z(i); 
(3) Z(i)/(p) is a field; 
(4) Zp(i) is a field; 
(5) Zp[xJ/(x2 + I) is a field; 
(6) (x2 + I) is a maximal prime ideal of Zp[x]; 
(7) x 2 + 1 is irreducible over Zp; 
(8) x 2 + 1 has no root in Zp . 

Thus, the question of primeness of pin Z(i) reduces to whether x 2 + 1 has a 
root in Zp or not. In Z2 we have + I = - 1 and x 2 + 1 has the root I . If p 
is an odd prime, then a root (1. of x 2 + lover Zp satisfies (1.2 = - J and (1.4 = J. 
Therefore (1. is an element of order 4 in the multiplicative group Z~ of Zp. 
Conversely, an element of order 4 in Z~ is a root of x 2 + 1. (Why?) However, 
Z~ is a cyclic group (100) and therefore has an element of order 4 if and only 
if 4 divides o(Z~) = p - I. Thus, we see that x 2 + I has a root in Zp if and 
only if p = 2 or p == J mod 4. Finally, we have that p is prime in Z(i) when 
p -# 2 and p ¢ 1 mod 4, which is to say, when p == 3 mod 4. 

Corollary (Fermat). Every prime p of the form 4m + 1 can be written uniquely 
as the sum of two squares. 

Proof. Since p is prime in Z, but not in Z(i) , there is a Gaussian prime 
a + bi with a -# 0 -# b, which divides p. Then a - bi also divides p and 
a2 + b2 = (a + bi)(a - bi) divides p2. However, a2 + b2 is prime, therefore 
a2 + b2 = p. Uniqueness follows from unique factorization in Z(i). (Why?) 

Now we have completely determined all the primes of Z(i). The improper 
primes are 0, ± 1, and ±i. The proper primes are of the form ±p, ±ip, where 
pEN is a prime of the form 4m + 3, and of the form a + bi where a2 + b2 is 
prime. 

174a. Determine all the primes of Z(i) with absolute value 5 or less. 

174p. Factor as a product of primes in Z(i) the numbers 15 and 6 + 'ai. 

1741. Determine completely the natural numbers that can be written as the 
sum of two squares. 
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175. Fermat's Last Theorem. Pierre de Fermat (1601-1665), whom LaPlace 
characterized as "the true inventor of the differential calculus," discovered 
many theorems in number theory as well. His interest in the subject was 
aroused by the appearance in 1621 of Claude Bachet's edition of the Arith­
metica of Diophantus. Beside the eighth proposition of the second book 
(" To divide a square number into two other square numbers "), Fermat in 
1637 made the following scholium : 

"To divide a cube into two cubes, or a fourth power into two fourth 
vowers, and generally any power whatever beyond the second into two of the 
same denomination, is impossible. Of this fact I have discovered a very 
wonderful demonstration. This narrow margin would not take it." 

This statement, that for n > 2 the equation X' + y" = z" has no solutions 
in which x, y, and z are natural numbers, is called Fermat's last theorem or 
Fermat's great theorem (as opposed to Fermat's" little" theorem given in 42). 
Despite the strenuous efforts of many eminent mathematicians, among them 
Euler, Legendre, Abel, Gauss, Dirichlet, Cauchy, Kummer, Kronecker, and 
Hilbert, no general proof has been attained. It seems likely that Fermat was 
mistaken in believing he had a proof. 

In the attempt to prove Fermat's last theorem, much valuable mathematics 
has developed. The classical ideal theory, which forms the subject of the next 
chapter, is one result. Our interest in Fermat's last theorem at this point is 
due to its connection with unique factorization jn the Kummer rings Z(p) 
defined in 155. 

For a long time it was thought that the ordinary laws of arithmetic, such 
as the division algorithm and unique factorization, must extend to the domains 
Z(p), where p = e2ni

/
p and p is prime. Gabriel Lame (l795-1870) gave a proof 

of Fermat's last theorem assuming unique factorization in Z(p), in the year 
1847. The error in Lame's proof was observed by Joseph Liouville {I 809-1 882) 
and by Kummer. Cauchy, also in 1847, gave a false proof that Z(p) is a 
euclidean domain. (The first prime for which this fails is 23.) In the years 1844 
to 1851 Kummer developed a theory of unique factorization for these rings. 
Kummer's theory was eventually superseded by the theory of ideals developed 
by Dedekind and Kronecker, but he did succeed in proving Fermat's last 
theorem for a large class of exponents. 

We shall consider here only the first case of Fermat's last theorem, the 
equation x 3 + y3 = Z3. Evidently Fermat knew a proof of this case, but the 
first published proof is that of Euler's Elements of Algebra, Chapter XV, 
Volume II (second edition, 1774). A much simpler proof, due to Gauss, is 
based upon the arithmetic of Zero) where ro = e2ni

/
3

. This is the proof we 
shall give. 

Z(ro) is the set of all complex numbers of the form a + bro where a, b E Z. 
Note that ro2 = W = -1 - ro. Now Zero) is a euclidean domain (159ot) and 
therefore a principal ideal domain and a unique factorization domain . The 
norm of z = a + bro is 
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Since a unit must have norm I, it follows that Z(w) has only the six units 
± I, ±w, and ±w2

• By arguments entirely similar to those for Z(i) in 174, 
we obtain the following: an element a + bw E Z(w) with a # 0 # b is a 
(pro per) prime oj Z( w) if and only if its norm a2 

- ab + b2 is a (proper) prime 
oj Z. The other primes of Z(w) have the form ±p, ±pw, or ±pw2 where 
p E Z is a proper prime and p # a2 

- ab + b2 for any integers a and b. These 
are characterized by the following result. 

Theorem. A positive proper prime p E Z is a proper prime oJZ(w) if and only 
if p == 5 mod 6 or p = 2. 

Proof. We construct the ring Zp(w) of elements a + bw where a, b E Zp 
by defining addition and multiplication as follows: 

(a + bw) + (e + dw) = (a + e) + (b + d)w 

and 

(a + bw)(e + dw) = (ae - bd) + (ad + be - bd)w. 

It follows (as in 174) that we have ring isomorphisms: 

Thus the question of primeness of p E Z(w) is equivalent to irreducibility of 
x 2 + x + lover Zp. Over Z2, x 2 + X + 1 is irreducible because neither 
element of Z2 can be a root. Now suppose p is an odd prime and x 2 + x + I 
has a root a E Zp. Clearly a # 0 and I/a is also a root, since the product of 
the two roots of x 2 + x + 1 is I. Since the sum of the roots is -I, we have 
a + (I/a) = -1. Squaring yields a2 + 2 + (l/a2

) = I, or a4 + a2 + I = 0, 
which shows that a2 is also a root. The polynomial x 2 + x + I can have at 
most two roots in Zp, therefore a2 = a or a2 = I/a. If a2 = a, then a = I 
and I + I + I = 0 in Zp, implying that p = 3. If a2 = l/a, ·then a3 = I and a 
is an element of order 3 in the cyclic group Z~ of order p - I. As a result, 
31 (p - I). Since p is odd, 21 (p - I), and therefore 61 (p - I). To summarize, 
x 2 + x + I is reducible over Zp, or in other words x 2 + x + I has a root in 
Zp, precisely when p = 3 or p == I mod 6. The theorem follows from the fact 
that p prime, p # 3, and p ¢ I mod 6 imply p = 2 or p == 5 mod 6. (Why?) 

Theorem. The equation x3 + y3 = Z3 has no solution in natural numbers. 

Proof. We shall actually prove more: the equation x 3 + y3 = Z3 has no 
solutions in Z(w) except the trivial ones in which x, y, or z is zero. Suppose 
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x, y, and z are three nonzero elements of Z(w) such that x3 + y3 = Z3 . Clearly 
we may assume that x, y, and z are relatively prime in pairs, which is to say 
that in terms of ideals, 

(x, y) = (y. z) = (z, x) = (1) = Z(w). (I) 

Indeed, if two of the three quantities x, y, and z had a greatest common 
divisor d which was not a unit, then the whole equation would be divisible by 
d3

, and (x/d), (y/d), (z/d) would be a solution for which the assumption held. 
We note that I - w has norm 

(1 - w)(1 - co) = (1 - w)(1 - ( 2) = 3, 

and is therefore prime in Z(w) . Furthermore, its complex conjugate is 

Since - w 2 is a unit, 1 - wand 1 - co are associates. Therefore if 1 - w 
divides (1 E Z(w), then 1 - w also divides iX, the complex conjugate of (1. We 
observe that every element of Z(w) is congruent to 0, I, or 2 modulo (1 - w): 
given a + bw E Z(w), we have a + b = 3q + r where 0 ~ r < 3 and 

a + bw == a + b == 3q + r == r mod (I - w). 

(Of course, 2 == -I mod(1 - w) since I - w divides 3.) 
Finally, we remark that (1 == ± I mod(1 - w)'< implies that (13 == ± I mod 

(1 - W)H3. To see this, we write (1 = ± 1 + f3(I - w»), and then 

(13 + I = «(1 + 1)«(1 + w)«(1 + ( 2
) 

= f3(1 - w»),(f3(l - w»), ± I + w)(f3(1 - w»), ± I + ( 2) 

= (1 - W)H2f3(f3 ± 1)(f3 ± (I + w». 

One of the three quantities f3, f3 ± I, and f3 ± (1 + w) must be divisible by 
I - w. (Why?) Therefore (13 + I is divisible by (1 _ W)H 3. 

The arithmetic of Z(w) is relevant to the equation x3 + y3 = Z3 precisely 
because within Z(w) we have the factorization 

(2) 

The three factors x + y, xw + yw2, and xw2 + yw are all congruent 
mod(1 - w) and their sum is zero since 1 + w + w2 = O. In addition, taken 
in pairs they are either relatively prime or else have I - was greatest common 
divisor as we see from the equations 
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(

v - uw)(x + y) + W 2
(V - U)(XW + y(2

), 

1 - w = (vw - u)(xw + y(2
) + (uw - v)(xw2 + yw), 

w 2(v - u)(xw2 + yw) + (u - vw)(x + y), 

where ux + vy = 1. (Recall that we are assuming (x, y) = 1.) 

One of the three quantities x, y, and z must be divisible by the prime 
I - w. Otherwise we have x, y, and z congruent to ± 1 mod(l - w), from 
which it follows that x 3, y\ and Z3 are congruent to ± 1 mod(1 - W)4. Then 
x 3 + y3 = Z3 implies 

±I ± 1 = ±l mod(l-w)4, 

which leads to the impossible congruences 

0= ± 1 mod(1 - W)4 and ±2 = ± 1 mod(1 - W)4. 

Furthermore, we may always change notation to insure that it is z which is 
divisible by 1 - w, since x 3 + y3 = Z3 is equivalent to the equations 

and 

Among all the nontrivial solutions of x 3 + y3 = Z3 in Z(w) for which 
I - w divides z, there must be one for which 1 - w divides z as few times as 
possible. (Why?) We may summarize our progress thus far in the following 
statement. If the equation x 3 + y3 = Z3 has a nontrivial solution in Z(w), then 
it must have a nontrivial solution such that 

(1) x, y, z are relatively prime in pairs; 
(2) I - w divides z; 
(3) there exists a number A E N such that (1 - w)' divides z but (1 - W)HI 

does not; 
(4) in any other solution with properties (1) and (2), (1 - W)l divides z. 

We shall show that given any such minimal solution, we can find one in which 
z is only divisible by (1 - W)l-1, contradicting (4). 

Let x, y, and z be a nontrivial solution of x 3 + y3 = Z3 satisfying conditions 
(1)-(4) above. Then z = 0 mod(1 - w) implies that 

x + Y = xw + yw2 = xw2 + yw = 0 mod(1 - w), 

and we have x + y = (1 - w)A, xw + yw2 = (1 - w)B, and xw2 + yw = 

(1 - w)C where A, B, C E Z(w) and A + B + C = O. Furthermore, since 

(x + y, xw + y(2
) = (xw + yw2

, xw2 + yw) = (x 2 +yw, x + y) = (I - w), 
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it follows that 

(A, B) = (B, C) = (C, A) = (I) . 

In other words, the quantities A, B, and Care relatively prime in pairs. 
Moreover we have (z/(l - W))3 = ABC, and unique factorization in Z(w) 
implies that A, B, and C are associates of cubes, that is, 

where a, f3, and yare units of Z(w) and (, tf, and 0 are relatively prime in 
pairs. We have that af3y = (z/(l - wKtfO? is both a unit and a cube in Z(w). 
Since the units of Z(w) are just the sixth roots of unity, it follows that 
af3y = ± 1. 

We know that 1 - w divides x + y, but not x or y. Therefore 

x == ± 1 mod(1 - w), y == -x mod(l - w), 

and 

so that 

Z3 == x 3 + y3 == 0 mod(1 _ W)4. 

Consequently, (l - W)4 divides Z3 = (l - W)3 ABC, and (l - w) divides one 
and, since they are relatively prime, only one of the three quantities A, B, and 
C. This in turn shows that I - w dividesjust one of the element~ (, tf, 0 E Z(w). 
Without loss of generality we may assume that I - w divides (J. 

Since I - w divides neither ( nor tf, we have (3 and tf3 congruent to 
± 1 mod(l - W)4. As a result A + B + C = 0 implies 

ae + f3tf3 + y(J3 ==±a ± f3 == 0 mod(l - W)3. 

Because a and f3 are units, this is enough to show a = ±f3. This yields 
af3y = ±a2y = ± I = ±a3 and y = ±a. Therefore, eliminating a, f3, and y, we 
obtain from A + B + C = 0 an equation of the form 

where ej = ± I. Then setting Xo = e1" Yo = e2 tf, and Zo = - e3 0, we have 

Furthermore, Zo is divisible by (I - W)l-l at the most, since Z3 = (I - w? 
(a(3)(f3tf3)(y(J3) is divisible by (I - W)3l and I-w divides (J only. Thus we 
have arrived at a contradiction. 
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Chapter 6 
In this chapter we study those integral domains which have a unique 

factorization theorem for ideals. Such rings are called Dedekind domains, 
and their study is called classical ideal theory. We define a Dedekind domain 
to be an integral domain whose ideals have a certain property (invertibility in 
the field of fractions) and then prove that this is equivalent to unique factoriza­
tion of ideals. Finally, we apply this theory ro prove that the ring of integers in 
a Galois extension of the rational field Q is a Dedekind domain . From this we 
draw the conclusion that the Kummer rings are Dedekind domains. This 
re-establishes a form of unique factorization for the rings associated with 
Fermat's last theorem, where the problem of unique factorization first became 
critical. 

Fields of Fractions 

176. Let R be a nontrivial integral domain. We .shall construct a field QR 
containing R as a subring by adding to R all the fractions r/s where r E Rand 
s E R* = R - {O}. Naturally QR is called the field of fractions of R. The ele-

174 
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ments of R are identified with the fractions having denominator 1. The general 
construction of the field of fractions Q R out of R is an exact parallel of the 
construction of the field of rational numbers Q out of the ring of integers Z. 
It is helpful to keep this in mind. 

We define an equivalence relation on the set R x R* by the rule (r1 , Sl) ~ 
(r2,s2) if and only if rls2 =r2sl , (The reader should verify that ~ is an 
equivalence relation.) The equivalence class of (r, s) wIll be denoted r/s. 
Clearly rl /sl = r2/s2 if and only if 'IS2 = r2 Sl' We let Q R denote the set of all 
such equivalence classes. Addition and multiplication in Q R are defined by 

and 

It is necessary to verify that these operations are well defined, but we omit 
doing it. QR is a field under these operations. The additive identity element 0 
may be represented as O/s for any s E R*. The multiplicative identity element 1 
may be represented as sis for any s E R*. The additive inverse of r/s is - r/s 
and, if r =F 0, the multiplicative inverse is sir. 

The mapping 1>: R -+Q R given by 1>r = r/1 is easily seen to be a ring mono­
morphism. This enables us to identify the element r E R with the element 
r/1 E QR and to think of R as a subring of QR' 

We observe that for the ring of polynomials F [xl over a field F, the field of 
fractions QF[.x] is the field F(x) of rational functions over F. (See 981X.) 

17M. Let R be a nontrivial integral domain and F a field . Show that a ring 
monomorphism 1>: R -+ F can be extended uniquely to a field monomorphism 
1>: QR-+F. 

176p. Let S be a subset of a ring R such that (1) S contains no zero divisors 
of R (hence 0 rt S) and (2) a, b E S implies ab E S. Construct a ring Rs of 
fractions r/s where the denominators s are elements of S, by imitating the 
field of fractions construction. 

1761. Show that any ring R is a subring of some ring with the property that 
every element is a unit or a zero divisor. 

1760. Show that the field of fractions of Z(J -5) is Q(j=5). 

176&. Show that the field of fractions of the Kummer ring Z(p) is Q(p). 
(See 155.) 

177. The field of fractions QR of a nontrivial integral domain R, being a 
field , has only two ideals, (0) and (1). We can, however, introduce a certain 
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class of subsets of Q R, called fractionary ideals of R, whose formal behavior 
resembles that of ideals of R. Fractionary ideals are important in the study of 
Dedekind domains. 

Let R be an integral domain with I # 0, that is, nontrivial. A fractionary 
ideal of R is an additive subgroup a of QR such that 

(I) a E a implies ra E a for all r E R, 
(2) there is some r E R* such that ra E R for all a E a. 

Every ordinary ideal of R is a fractionary ideal of R. For clarity and emphasis, 
we call an ordinary ideal of R an integral ideal. Obviously a fractionary ideal IS 

integral if and only if it is a subset of R. 
With every element r/s E QR we may associate the principalfractionary ideal 

(r/s) defined by 

In other words, (r /s) contains all the multiples of r/s by elements of R. 
The notions of sum and product of ideals may be extended to fractionary 

ideals in the obvious fashion. Thus, if a and bare fractionary ideals of R, then 
a + b is the fractionary ideal containing all elements of the form a + b where 
a E a and b E b. Furthermore, ab is the smallest fractionary ideal containing 
all products ab where a E a and b E b. Of course if a and b are integral ideals, 
then so are a + band abo 

177a.. Which of the properties given in exercises 160a., 160p, 161a., 161P, 
1611, and 161& hold for fractionary ideals? 

177p. Compute the following for fractionary ideals of Z: 

(a) 0(2) + (2/3), 
(b) (1 /2)(2/3), 
(c) (1 /2)«2/3) + (3/4», 
(d) (1 /2) n (2/3), 
(e) (1 /2) n (2/3)(3/4). 

178. If a and bare fractionary ideals of Rand b # (0), then we define their 
quotient to be the set 

alb = {x E QR I (x)b c a}. 

To see that alb is again a fractionary ideal of R, we observe that it is clearly 
an additive subgroup of QR which is closed under multiplication by elements 
of R, and that it has the special property of fractionary ideals. Specifically, if 
r E R* is an element such that ra E R for all a E a and b is a nonzero element of 
b, then rb E R* is an. element such that (rb)x E R for all x E a/b. (Why?) 
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Note that even when a and b are integral ideals, their quotient alb need not 
be an integral ideal. Thus, the fractionary quotient alb is formally a new 
operation ; it is related to the integral quotient a : b by the equation a : b = 

(a/b) (\ R when a and b are integral. (See 161£.) 

Proposition. Every fractionary ideal is the quotient of an integral ideal by a 
principal integral ideal. 

Proof. If a is a fractionary ideal of R, there exists an element r E R* such 
that ra E R for all a E a, or equivalently, such that (r)a is an integral ideal. 
We shall see that a = (r)a/(r) . If x E a, then (r)(x) c: (r)a , and consequently, 
x E (r)a/(r) . On the other hand, if x E (r)a/(r), then rx E (r)a, or equivalently, 
rx = sra for some s E R and a E a. Since R is an integral domain and r =f. 0, 
this implies x = sa E a. 

Corollary. If R is a principal ideal domain where 1 =f. 0, then every fractionary 
ideal of R is principal. 

Proof. By the proposition, we know that every fractionary ideal of R has 
the form (r) /(s) for r, s E R, s =f. O. It suffices to observe that (r) /(s) = (r/s) . 

17&!. Prove the following properties of the quotient operation for fraction­
ary ideals : 

(a) (a/b)b c: a, 
(b) (a/b)/ e = a/be, 
(c) a/(b + c) = (a/b) (\ (a/ c), 
(d) (a (\ b)/ e = (a/ c) (\ (b/ e), 
(e) R c: alb if and only if b c: a. 

178~. Compute the quotient alb of the fractionary ideals a and b of the ring 
R in the following cases: 

(a) R = Z , a = (1 /2), b = (2/3), 
(b) R = Z(i), a = (1 / 1 + i), b = (i/2), 
(c) R = Q[x], a = (x/x + 1), b = (l /x). 

179. A fractionary ideal a of a nontrivial integral domain R is invertible if 
there exists a fractionary ideal b of R such that 

ab = (1) = R. 

If ab = (I), then clearly b c: (1)/a. On the other hand, x E (I)/a implies 
x E (x) = (x)ab c: b since (x)a c: (1). Thus ab = (i) implies b = (I)/a. It is 
convenient to write a-I in place of (i )/a when a is invertible. 
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We note that a nonzero principal fractionary ideal (a) is always invertible 
and that (a)-I = (a-I), or in other words, (l) /(a) = (l la). In general there are 
invertible fractionary ideals which are not principal, but we can prove the 
following. 

Proposition. An invertible fractionary ideal is finitely generated. 

Proof. Let a be an invertible fractionary ideal of R. Since 1 E (1) = a -I a, 
we have 

for some elements a~, a; , ... , a~ E a-I and ai' a2 , ... , an E a. If X E a, then 
the elements r l = xa~, r2 = xa;, ... , rn = xa~ belong t.o R and we have, 
multiplying the equation above by X, 

This shows that ai' a2 , ••. , an generate a, that is, 

1791X. Prove that if a and bare fractionary ideals and b is invertible, then 
alb = ab- I

. 

179p. Prove that if a and b are invertible fractionary ideals, then a c b if and 
only if b- I c a - I. 

1791. Prove that two fractionary ideals are both invertible if and only if 
their product is invertible. 

1790. Let R be a nontrivial integral domain. Show that the invertible 
fractionary ideals of R form a group under the product of ideals. 

179&. Suppose that a, b, a + b, and a n b are invertible fractionary ideals. 
Show that 

(a + b)-I = a-I n b- I, 

(a n b) - I = a-I + b- I. 

179~. Show that the ideal (x, y) of Q[x, y] is not invertible. 

17911. Compute the inverse of the ideal (2, I + J - 5) in Z(J - 5). 
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Dedekind Domains 

180. A Dedekind domain is a nontrivial integral domain in which every 
nonzero fractionary ideal is invertible. Every fractionary ideal of a principal 
ideal domain is principal (178) and, if nonzero, invertible (179). Therefore a 
nontrivial principal ideal domain is a Dedekind domain. 

Richard Dedekind (1831-1916) showed that Kummer's ideal elements, 
which seemed mysterious and artificial, could be viewed as subsets of a ring 
having special properties (closure under addition and closure under multipli­
cation by ring elements). Dedekind called these sets ideals and showed that 
in many domains they possess a unique factorization theorem. We shall see 
that a nontrivial integral domain has unique factorization for ideals if and 
only if it is a Dedekind domain. 

180a. Show that a nontrivial integral domain is a Dedekind domain if and 
only if for each integral ideal a there exists an integral ideal b such that ab 
is principal and ab is nonzero if a is. 

180p. Show that a nontrivial integral domain is a Dedekind domain if and 
only if for any two integral ideals a and b, a c b implies a = be for some 
integral ideal c. 

180..,. Prove that in a Dedekind domain an ideal is prime if and only if it is 
not a product of two proper ideals. 

181. Proposition. Every proper prime ideal of a Dedekind domain is a 
maximal ideal. 

Proof. Suppose p is a proper prime ideal of a Dedekind domain Rand 
that pea where a is an integral ideal of R. Then a -1 V c a -1 a = R, and there­
fore a-Iv is an integral ideal of R. Now a(a-Ip) = p, and therefore either 
a c V or a - I p C V (163). Since pea by hypothesis, a c p implies a = p. On 
the other hand, a -I V c P implies a-I c VV - 1 = R from which it follows that 
Rca and a = R (179ot). We have shown that V c a implies a = p or a = R. 
Therefore V is maximal. 

Corollary. If a and V are proper ideals of a Dedekind domain, V is prime, and 
a ¢ V, then av" = a n V" for any n E N. 

Proof. Since a ¢ V and p is maximal, a + V = (I) = R. Therefore we have 
I = p + a where p E V, a Ea. Consequently 

I = I" = (p + a)" = p" + ra E V" + a, 
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where 

If x E a 11 1'. then 

x = x{p· + ra) = p·x + rax E ap·, 

which shows that a 11 p. cap·. Since ap· call 1'., equality follows. 

181a. Show that for distinct proper prime ideals 1'1' 1'2' ... , Pk of a Dedekind 
domain, 

p~I1'"22 ... 1'Z" = 1'~1 11 1'"22 11 ... 11 1'Z". 

182. Theorem. In a Dedekind domain every proper ideal can be factored as a 
product of proper prime ideals. Furthermore this factorization is unique 
except for the order of the factors. 

Proof. We already know that every proper prime ideal of a Dedekind 
domain is maximal (181) and that every nonzero ideal, being invertible, is 
finitely generated (179). (Since (0) is principal, we can say that every ideal of a 
Dedekind domain is finitely generated. Rings with this property are called 
Noetheriun.) 

Let R be a Dedekind domain. If a is a proper ideal of R which is not a 
product of proper prime ideals of R, then a cannot be a prime ideal because 
we construe" product" to include products of length one. Therefore a is not 
maximal since maximal ideals are prime (162). Consequently, there is an ideal 
b of R such that a c b c R and a"# b"# R. Furthermore, ab- 1 c bb- 1 = R so 
that ab- 1 is an integral ideal. Clearly a factors as (ab- 1)b. One of the factors 
ab -lor b must fail to be a product of proper primes-otherwise a would be. 
Now a "# b and a "# ab -1 (why?), and we may say: if a is a proper ideal which 
is not a product of proper primes, then there exists a strictly larger proper ideal 
a' with the same property. (a' = b or a' = ab -1.) 

By iterated use of this statement, we can derive from the existence of a single 
ideal with no proper prime factorization the existence of an infinite, ascending 
chain of ideals of R, 

a c a' c a" c ... c a(·) c ... , 

in which a(i) "# a(i+ 1). (See 183.) We shall see that R does not admit such 
chains. It is routine to verify that the union 

co 

2I = U a(·) = {r E R IrE a(·), n E N} 
.=0 
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is again an ideal of R. Consequently, I2C is finitely generated by elements 
ai' a2' . .. , ak E R. For each i = 1, 2, . . . , k there is a natural number nj such 
that aj E a(n,). As a result al , a2 , .. . , ak E a(n) for n ~ max{nl , n2, ... , nk }. This 

implies 

I2C = (al , a2, ... , ak ) c a(·) 

for large n, and since a(n) c ~r for all n, we have a(n) = I2C when n is sufficiently 
large. Of course this contradicts (for large n) the fact that a(n) #- a(n+ I). This 
contradiction shows that we cannot have a proper ideal of R which is not a 
product of proper primes. 

It remains to show uniqueness. We proceed by induction on the number of 
primes in the factorization, that is, we prove by induction the statements Sn 

for n E N. 
Sn: If a is a proper ideal of R which can be factored as a prod uct of n (or 

fewer) proper prime ideals, then any two factorizations of a are the 
same except possibly for the order of the factors. 

To start the induction, we remark that SI is almost obvious. An ideal which is 
the product of one proper prime ideal is itself a proper prime and has no true 
factorizations at all. Now we assume Sn and.prove Sn+I' Suppose that 

a=P1P2"'Pk=qlq2"'ql 

are two factorizations of the proper ideal a and k :::; n + l. Since a c ql and 
q, is prime, one of the factors Pl' P2, ... , Pk must be contained in q, (163). We 
may suppose Pk c q,. Since Pk is a proper prime and, consequently, maximal, 
we must have Pk = q,. Now, however, we see that 

ap;l = P1P2'" Pk-l = qlq2'" q'-l, 

which falls within the scope of S. since k - 1 :::; n. Therefore these last two 
factorizations are the same, and the given ones must have been the same. 

Corollary. In a Dedekind domain every proper ideal may be written uniquely in 
the form p~'p22 . . . p~", where PI' P2, ... , Pk are distinct proper prime ideals 
and VI' V2 , ••• , Vk E N. 

182a. Prove that in a Dedekind domain every proper fractionary ideal can 
be written uniquely in the form P2'P22 ... P~", where PI' P2, . . . , Pk are distinct 
prime ideals and Vl , V2, ••. , Vk are nonzero integers. 

182p. Prove that in a Dedekind domain every proper (integral) ideal can be 
written uniquely in the form P~' n P22 n ... n P~" where PI' tt2, ... , Pk are 
distinct prime ideals and VI' V2 , . .• , Vk E N. 

1821. Let a and b be fractionary ideals of a Dedekind domain and Pl, P2 , ... , 
Pk be prime ideals. Suppose further that 

a = pi'pz2 ... p~k and b = pi'p~2 ... p~k. 
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Show that a c b if and only if Vj ~ J.l j for i = 1, 2, . . . , k . (Here the v;'s and 
J.l;'S are allowed to be any integers.) 

1820. Using the notation of the previous problem, show that 

a n b = pTax(Vl. ptl p'2"X(V2 . P2) • •• p;;,ax(vk . Pk), 

ab = p~l +Pl p~2+P2 ••• p~k+P", 

a + b = pTin(Vl . ptl pTin(V2 . P2) ••• p;;'in(vk . Pk). 

182&. Show that for any three fractionary ideals a, b, c of a Dedekind 
domain, 

a + (b n c) = (a + b) n (a + c), 

an (b + c) = (a n b) + (a n c). 

183. The Axiom of Choice. The preceding proof depends upon a set­
theoretic principle, called the axiom of choice, which has a different character 
and a higher order than the simple rules of intuitive set theory which have 
served us to this point. It is worth a digression to make explicit this principle 
and its use in the present instance, the only place we need it. 

Axiom of Choice. For any set X there exists a mapping 

such that </JA E A for each nonempty subset A of X. (Recall that 2x denotes the 
power set of X defined in 14.) The mapping </J is called a choice function for X 
because it "chooses" an element </JA from each nonempty subset A. 

In the proof of 182 we must apply the axiom of choice to the set J R of 
ideals of R in order to construct the ascending chain (*). Let </J: 2" R -+ J R be a 
choice function for JR ' If a is any ideal without a proper prime factorization, 
let (j&'(a) denote the class of ideals which contain a properly and which them­
selves have no proper prime factorization . The first argument in 182 shows 
that for such a, (j&'(a) is not empty. Therefore the chain (*) is defined inductively 
by the rule a(·+I) = </J«(j&'(a(n»). 

184. The Chinese Remainder Theorem. Let aI' a2, . . . , an be ideals of a 
Dedekind domain R and aI ' a2 , ••• , an elements of R. There exists an element 
x E R, such that 

x == aj mod aj, i = 1,2, .. . , n, 

if and only ifa j == aj mod (aj + a) f or all i andj. 
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Proof. The conditions a i == aj mod (a i + a) are clearly necessary. The 
proof of their sufficiency proceeds by induction on n beginning with n = 2. 

For n = 2, a1 == a2 mod (a1 + a2) implies that 

where a~ E ai' a~ E a2 . Then x = a 1 - a'i = a 2 + a~ has the required proper­
ties. 

For n> 2, we may suppose, as a result of the induction hypothesis, that 
there is an element x' E R such that x' == ai mod a i for i = 1,2, . .. , n - 1. Let 

Then x will be a complete solution to the set of n congruences (*) if x == x' 
mod a and x == an mod an. There exists such an x E R provided that x' == Xn 

mod (a + an). However, 

which follows from 182£. Since x' == Xi mod a i for i = 1, 2, .. . , n - I, we 
have 

x' == Xi == Xn mod (a i + an) for i = 1, 2, ... , n - 1. 

This means that for i = 1, 2, ... , n - 1, 

x' - Xn E a i + an 

and therefore 

x' - Xn E a + an. 

Thus the condition x' == Xn is satisfied and (*) has a solution x E R. 

As an example, this theorem implies that the set of congruences 

x == 1 mod 6, x == 5 mod 8, x == 4 mod 9 

has a solution. Indeed any integer x == 13 mod 72 is a solution. The name of 
this theorem recalls its use (for integers) by the Chinese astronomers of 
ancient times in calender reckoning. 

184a. Let R be a Dedekind domain and a a proper ideal of R with factoriza­
tion a = pi'pz' . . . pZk. Prove that Ria is isomorphic to the direct product 
(Rl pi') x (Rl p2') x . . . X (RfpZk). 
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184p. Let ai' a2, ... , an be distinct elements of a field F. Using the Chinese 
remainder theorem, show that there exists a polynomial f over F which takes 
given valuesf(aJ = Ci for i = 1,2, ... , n. (Compare 100«.) 

1841. Prove that a Dedekind domain with a finite number of prime ideals is a 
principal ideal domain. 

1840. Prove that every ideal of a Dedekind domain can be generated by two 
of its elements, one of which may be chosen arbitrarily. 

184&. Let 0 and b be ideals of a Dedekind domain. Show that there exists a 
principal ideal (c) such that (c) + ob = o. 

185. In the next articles we shall develop a proof of the converse of the 
unique factorization theorem for ideals in a Dedekind domain (182). It will 
be convenient to call an ideal primigenial if it is a product of proper prime 
ideals. A primigenial ring is one in which every proper ideal is primigenial. 

Proposition. In a nontrivial integral domain factorizaTion of inverrible pri­
migeniai ideals is unique. 

Proof. Suppose 0 is an invertible ideal of a nontrivial integral domain, and 

o = PI P2 ... Pk = ql q2 ... ql 

are two factorizations of 0 as a product of proper primes. Each of the P /s and 
q/s is invertible (1791); in fact we have 

pi 1 = O-I PI ... Pi-lPi+1 ... Pk 

and a similar formula for qj 1. Among the primes PI' P2, ... , Pk choose one 
which is minimal in the sense that it does not contain any of the others pro­
perly. We may assume that this is Pk. Since 0 = ql q2 ... ql is contained in Pk' 
a prime, at least one qi is contained in Pk (163). We may suppose ql C Pk. 
Similarly, PI P2 ... Pk C ql implies Pi C ql for some i. However, now we have 
Pi c ql C Pk' and hence Pi C Pk. The choice of Pk forces Pi = Pk, and then 
Pk C ql C Pk implies ql = Pk. Now we have 

a' = aPk l = aql-l = PIP2'" Pk-l = QlQ2'" q'-l' 

The ideal 0' is invertible because it is a product of invertible ideals. Therefore 
the entire argument may be repeated with 0' in place of o. The conclusion 
follows in a finite number of steps of this kind. 

186. Proposition. If R is a primigenial ring and P is a proper prime ideal of R, 
Then the quotient ring R =R/p is a primigenial ring. 
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Proof. Since P is a proper prime ideal, R is a nontrivial integral domain. 
Let ¢: R ->R denote the canonical epimorphism, given by ¢a = a + p=ii. Since 
¢ is an epimorphism, it carries ideals of R to ideals of R and preserves pro­
ducts of ideals, that is, ¢(ab) = (¢a)(¢b). (We leave the proof to the reader.) 

Furthermore, ¢ gives a one-to-one correspondence between the proper 
prime ideals of R and the proper prime ideals of R which contain p. Indeed, 
if q is a proper prime ideal of R, then ¢ - I(q) is a proper prime ideal of R 
containing P, as we have previously shown (166). On the other hand, if q is a 
proper prime ideal of Rand ii5 E ¢(q), then ab E q, where ¢a = ii, ¢b = 5. Con­
sequently, a E q or b E q, from which is follows that ii E ¢(q) or 5 E ¢(q), and 
thus ¢(q) is prime. 

Now suppose that a is a proper ideal of R. Then ¢ -I(a) is a proper ideal of R 
and has a factorization ¢ -I(a) = PI P2 ... Pk as a product of proper primes 
each of which contains p. Therefore in R we have the factorization 

187. Theorem. A primigenial ring is a Dedekind domain. 

Proof. Let R be a primigenial ring. The essential point is to show that 
every invertible proper prime ideal P of R is maximal. Suppose that P is an 
invertible prime ideal and (0) oF P oF (1). Let a E R - p. Then the ideals 
P + (a) and p2 + (a) have prime factorizations 

P + (a) = PIP2 ... Pk and p2 't (a) = qlq2 ... qt . 

Clearly each Pi contains P, but further, we have 

PPIP2 . . . Pk = pep + (a) = p2 + pea) c p2 + (a) c qj, 

which implies that each qj contains one of the factors of p2 + p(a). Each of 
these factors, p, PI' P2, ... , Pk, contains P, and therefore each prime qj con­
tains p. Passing to the quotient ring R = Rip, which is also primigenial by 186, 
we see that 

where bars denote images under the canonical epimorphism ¢: R -> R. Since 
(ii) is principal and therefore invertible, the two factorizations of (ii) In (.) 

must be identical except for order (185), and renumbering if necessary, we may 
assume that Pi = qi for i = 1,2, .. . , 1= k. Since all the p;'s and q/s contain 
P, it follows from Pi = qi that Pi = qJoreach i. As a result we have P + (a) = 
p2 + (a), from which we conclude that P c p2 + (a). Consequently, 

P = p n (p2 + (a)) c p2 + (a)p c p. 
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Therefore P = p2 + (a)p, and since P is invertible, this implies 

Because a was any element of R - p, this shows that P is maximal. Thus we 
have established the essential point. 

The rest of the proof is easy. Let P be any proper prime ideal of Rand 
a E p. Then (a) = PI P2 ... Pk C P for primes Pi' each of which is invertible and 
consequently maximal. However, one of the p/s must be contained in P since 
their product is. Now Pi C P implies P = Pi (since Pi is maximal), and we have 
shown that any prime ideal is invertible. Since every proper ideal of R is a 
product of prime ideals, it follows that all such ideals are invertible and R is a 
Dedekind domain. 

Integral Extensions 

188. Let R be a subring of a ring R'. An element x E R' is said to be integral 
over R if it satisfies an equation of the form 

in which the leading coefficient is 1 and the other coefficients, aI' a2 , •.. , an, 
are elements of R. The set of elements of R' which are integral over R is 
called the integral closure of R in R', and will be denoted It When R = R, we 
say that R is integrally closed in R'. When R = R', we say that R' is an integral 
extension of R. 

189. A ring R' is a finite extension of a subring R if there exist elements 
ZI' ZZ, .•. , Zn E R' such that every element Z E R' can be written in the form 

for some elements rl , r2 , •.• , rn E R. In this case the set {ZI; Z2' ... , zn} is 
called a basis for R' over R. 

Proposition. If R' is a nontrivial integral domain which is afinite extension of a 
subring R, then R' is an integral extension of R. 



Integral Extensions 187 

Proof. Let {ZI' Z2, ... , zn} be a basis for R' over R. Then for any Z E R' we 
have ZZi = l,'}= I ri} Zj' where rij E R for i,j = 1,2, ... , n. Thus we may view 
ZI , Z2' .. . , Zn as the solution of the system of linear equations over QR' in 
unknowns XI' X 2 , ... , Xn: 

{

(rll - Z)XI + r12 X 2 + ... + rln Xn = 0 

r21 X I + (r22 - Z)X2 + ... + r2n Xn = 0 

rnl~1 + rn2 ;2 + ... + (rnn - Z);n = o. 

Therefore the determinant 

r ll - Z 

r 21 

r12 

r22 - Z 
=0. 

However, this determinant is just a polynomial in Z with coefficients in Rand 
with leading coefficient (_l)n, which shows that Z is integral over R. Thus 
every element Z E R' is integral over R, and R' is an integral extension of R. 

189a. Show that if R' is a finite extension of Rand R" is a finite extension of 
R', that R" is a finite extension of R. 

190. If R is a subring of R' and x E R', we denote by R[x] the smallest sub­
ring of R' containing both Rand x. Clearly R[x] consists of all the elements of 
R' which can be written as polynomials in x with coefficients in R. 

Proposition. An element x of a nontrivial integral domain R' is integral over a 
subring R if and only if R[x] is a finite extension of R. 

Proof. By the preceding proposition if R[x] is a finite extension of R, then 
it is an integral extension of R, and consequently x E R[x] is integral over R. 
On the other hand, if x is integral over R and satisfies the equation 

then every element of R[x] may be written as a polynomial in x of degree less 
than n. (How?) Therefore {I, x, x 2, ... , x"-I} is a basis for R[x] over R. 

191. Proposition. The inregral closure R of a subring R of a nontrivial 
integral domain R' is a subring of R'. Furthermore R is integrally closed in R'. 
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Proof. Suppose x, y E R. Then R[x] is a finite extension of R, and 
R[x, y] = (R[x])[y] is a finite extension of R[x] because x IS integral over Rand 
y is integral over R[x]. It follows that R[x, y] is a finite extension of R. (See 
189«.) In fact, if x and y satisfy equations of degree nand m respectively over 
R, then the set of nm elements xiyi where 0 S; i < nand 0 S; j < m is a basis for 
R[x, y] over R. Since R[x, y] is a finite extension of R, it is an integral exten­
sion (189); consequently, the elements x - y and xy of R[x, y] are integral 
over R. This shows that R is a ring. 

Suppose now that x is an element of R' and that x is integral over R. Then 
x satisfies an equation 

It follows that we have a sequence of finite extensions 

Therefore R[a l , az , ... , an, xl is a finite extension, and consequently, an 
integral extension of R. Thus x is integral over R, that is, x E R. 

Algebraic Integers 

192. We recall that an algebraic number is a complex number which is 
algebraic over the rational field Q and that the set of all such numbers forms 
a field Q (108). Analogously, an algebraic integer is a complex number which 
is integral over the ring of integers Z. By the preceding proposition we know 
that the set of algebraic integers forms a ring Z. Of course Z is just the integral 
closure of Z considered as a subring of C. Furthermore, since every element of 
Z satisfies an algebraic equation over Z, it is clear that an algebraic integer is 
an algebraic number, that is, Z c: Q. 

In general the algebraic integers which belong to a given number field Fare 
called the integers of F and form a ring which we denote ZF' Obviously 
ZF = Z 11 F. By definition we have Zc = Z. 

Proposition. The ring of integers Z is integrally closed in the rational field Q, 
that is to say, ZQ = Z. 

Proof Suppose that rls E Q is an algebraic integer where r, s E Z and 
(r, s) = 1. Then for some ai' az , .. . , an E Z, 
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(
r)n (r)n-1 (r) ~ + a1 ~ + ... + an- 1 ~ + an = 0 (1 ) 

and 

(2) 

Equation (2) shows that s I rn. Since (r, s) = 1, we must have s = ± 1 and 
rjs = ± r E Z. This completes the proof. 

The elements of Z are often called rational integers to emphasize that they 
are the integers of the rational field Q. 

Proposition. For every algebraic number ex there exists a rational integer m 
such that mex is an algebraic integer. 

Proof. We may assume without loss of generality that ex is a root of a 
primitive polynomial f given by 

ao, ai' .. . , an E Z. 

Then ao ex is a root of the polynomial g given by 

Since g has integral coefficients, ao ex is an algebraic integer, and we may take 
m =ao . 

192a. Let R be a number domain (subring of C) which is a principal ideal 
domain. Show that R is integrally closed in its field of fractions QR ' 

192Jl. Show that the ring of integers of the field Q(i) is Z(i), the ring of 
Gaussian integers. 

1921. Show that the polynomial ring Z[x] is integrally closed in its field of 
fractions. 

1920. Let ex be an algebraic integer of E, a Galois extension of Q with group 
t'§(EjQ) = {4>1 ' 4>2' . . . , 4>n}· Prove that all the conjugates 4>1 ex , 4>2 ex, . . . , 4>nex of 
ex are algebraic integers and that the polynomial 

has coefficients which are rational integers. 

193. Proposition. If f is a polynomial over Z and ex is a root of f, then 
(fx) j(x - ex) is also a polynomial over Z. 
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Proof. The proof is by induction on the degree off When deg f = I, we 
have fx = a(x - cx) where a E Z and the result is obvious. To accomplish the 
induction step, we suppose the statement holds for polynomials of degree less 
than n. Suppose deg f = nand 

It follows from the argument of the preceding article that: 

(I) ao E Z, 
(2) the polynomial g defined by fx = ao x"-I(X - cx) + gx has coefficients 

in Z, 
(3) deg 9 < n. (Why?) 

Therefore, by the induction hypothesis (gx)/(x - cx) has coefficients in Z, 
and consequently so does f since 

(~) = aox"-I + (~). 
x-cx x-cx 

Corollary. If CX I , CX 2 , ••• , CXk are roots of the polynomial f over Z given by 

then ao cxI CX 2 ••• cxk is an algebraic integer. 

Proof. Let CXk +I ' CXk + 2' ... , CXn denote the remaining roots of f Applying 
the proposition n - k times shows that the polynomial 

f(x) 
( )( ) ( ) = ao(x - cxl)(x - CX2) ••• (x - cxn) x - CXk + I X - CXk + 2 ••• x - CXn 

has coefficients in Z . However, aOcx1cx2 ••• CXk is the constant term of this poly­
nomial. 

194. In this and the following two articles we shall consider the situation 
where R is the ring of algebraic integers of a number field E which is a Galois 
extension of the rational field Q. To fix notation, we assume that [E: Q] = n 
and that the Galois group is C§(E/Q) = {<PI' <P2, ... , <Pn}. We shall omit 
repetition of these assumptions in the hypotheses of the propositions. 

Proposition. There exists a basis COl' CO2 , ... , COn for E over Q such that every 
element cx E R can be written uniquely in the form 

where aI' a2, ... , an E Z. 
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Proof. Since every algebraic number can be multiplied by an integer to 
obtain an algebraic integer, we may begin with the assumption that we have 
a basis WI' W2 , ... , wn for E over Q consisting of algebraic integers. Now 
we form the determinant 

CPIWI CPIW2 cplwn 
[)= CP2 WI CP2 W2 CP2 Wn 

CPnWI CPn W2 CPnwn 

We observe that [) is an algebraic integer, or more specifically, that [) E R since 
each of the elements CPiWj belongs to R. (1920) . Furthermore, for cP E '§(E/Q) 
we have 

CPCPIWI CPCPIW2 cpcplwn 
cp[)= CPCP2 WI CPCP2 w2 CPCP2 wn 

CPCPnWI CPCPn W2 CPCPnwn 

However, the effect of letting cP act this way is simply to permute the rows. 
Consequently, cp[) = ±[) for any cP E ,§(E/Q). Therefore [)2 E Q. Since [)2 is an 
algebraic integer, it follows that [)2 E Z. Now we set Wi = WJ[)2. Clearly 
("1' W2, .•. , Wn form a basis for E over Q. 

Suppose now that IX E R and that we have written IX as 

where ai' a2, . . . , an E Q. Applying CPI, CP2, .. . , CPn to IX, we obtain: 

{

CPIIX = al(CPlwl) + az(CPIW2) + .. . + an(CPlwn) 
CP2 IX = al(CP2 WI) + az(cp2 (2) + ... + an(CP2 Wn) 

CP~IX = al(;nWI) + az(;nW2) + ... + an(;nWn). 

We may therefore interpret ai, a2 , .. . , an as the solution of the system (*) of 
linear equations over E. Consequently ai = [)J[), where [) is the determinant 
above and where 

(1) (2) (i) (n) 

CP1W1 CP1W2 CP1IX cp1wn 
[)i= CP2 WI CP2 w2 CP2 IX CP2 Wn 

CPnwl CPn W2 CPnIX CPnwn 
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is obtained from b by modifying the i-th column. Clearly b i is an algebraic 
integer. Furthermore b2ai = bbi ERn Q = Z. Now we set ai = b2ai E Z, and 
we have 

Since WI' W2, ... , Wn form a basis for E over Q, this final expression for IX 
must be unique. 

194a. Prove the proposition above assuming only that E is a finite extension 
ofQ. 

195. Proposition. 110 is an ideal 01 R, then there exist elements lXI' IX2 , ... , 
IXn E 0 such that every element IX E 0 may be written in the lorm 

where Cl, C2, ... , Cn E Z. 

Proof. We define mappings J;'/2, ... ,/. from 0 to Z by Ii IX = ai' where 
IX = al WI + a2 W2 + ... + an Wn is the unique expression of IX in terms of a 
basis WI' W2, ... , Wn, chosen as guaranteed by the preceding article. The Ii 
are not ring homomorphisms in general, but they are homomorphisms of the 
additive group structure. Therefore, the sets 

Al = Im/l =/1(0), 

A2 =/2(Ker/d, 

are subgroups of Z. Therefore there are integers k 1 , k 2, ... , k n such that 
Ai = k i Z. It follows that we can choose elements lXI' IX2 , ... , IXn E 0 such that 
liIX i = k i and.ljIX i = 0 for j < i. 

Given IX E 0, we haveftIX = c1kl for some CI E Z. Then II (IX - CI I( 1) = 0 and 
12(IX - c1( 1) = C2 k2 for some C2 E Z. Then 
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Continuing in this manner, we obtain cl , c2 , • . • , Cn E Z such that 

i = 1,2, ... , n, 

Corollary. The ring R is Noetherian, that is, every ideal 01 R is .finitely 
generated. 

Proof. In the notation of the proposition we have that 0 is generated by 

195a. Prove that an integral domain R' which is a finite extension of a 
Noetherian domain is itself Noetherian. 

195p. Prove that a ring is Noetherian if it is a quotient ring of a Noetherian 
ring. 

1951. With R as above and n E Z show that R /(n) is finite . 

196. Theorem. The ring 01 algebraic integers in a Galois extension 01 the 
rational field Q is a Dedekind domain . 

Proof. As above we let E be a Galois extension of Q of degree n with 
t§(E/Q) = {1>I' 1>2 , ... , 1>n} and R = ZE = Z (\ E. It is enough to show that 
for any nonzero ideal 0 of R there exists a nonzero ideal b of R such that 
ob = (c), a principal ideal; this implies that o(b/(c)) = R, and a is invertible. 

Suppose then that 0 is a nonzero ideal of R. From 195 we know that a is 
finitely generated, say 0 = (ao, ai' . . . , ak)' We form the polynomial 

and let PI' P2, . .. , Pk E C denote the roots off Then it follows that 

where 0'; denotes the i-th symmetric function (131). For 1> E t§(E/Q) we let 1>1 
denote the polynomial given by 

The coefficients of 1>/ are elements of R, that is, algebraic integers in E, and 
the roots of 1>1 are 1>PI' 1>P2' ... , 1>Pk ' It follows that 

h = (1)d)(1>d) . .. (1)nl) 
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is a polynomial whose coefficients are algebraic integers of E and, at the same 
time, rational numbers since ¢h = h for ¢ E <§(E/Q). Consequently the 
coefficients of h are rational integers. Furthermore, one element of <§(E/Q) is 
the identity automorphism of E, and therefore J is one of the factors of h. In 
other words, h = Jg where g is a polynomial with coefficients in R. We let 

and 

where m = k + l. We denote the roots of g by 'I' '2, .. . , '[; then the roots of 
hare 

Since h has integral coefficients, we can write h = eli where li is a primitive 
polynomial and e is the content of h, which is to say, the greatest common 
divisor of the integers )10, )II' ... , )1m . The coefficients of li are 

all of which are integers, while the roots of li are the same as those of h. 
Therefore we know from the corollary in 193 that 

is an algebraic integer for any choice of integers, 

As a result, CXo Po = )10 implies 

CXiPi = [( -I) icxo a/PI' P2, ... , Pk)][( _l)ipo ai'I ' '2, ... , 'I)] 

= ( - I Y + icxo Po a/PI' P2 , ... , Pk)ai'l, '2, . . . , '[) 

= (_l)i+ ie{()lo /e)a/PI' P2, ... , Pk)ai'l, '2, . . . , 'I)}· 

In the last equation the term inside the braces is the sum of all the terms of the 
form (*); therefore it is an algebraic integer and an element of R. The result is 
that CXi Pi E (e), the principal ideal of R generated by the rational integer e. 
(Of course this holds for any choice of i and j, 0 ~ i ~ k and 0 ~ j ~ t.) 

Now the coefficients of the polynomial g generate an ideal 

of R, and the coefficients of the polynomial h generate the principal ideal 
(e) = (Yo, )II, .• . , )1m)· The product ideal ab is generated by all the elements 
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et.i pj , each of which belongs to (c), and consequently ab c (c). On the other 
hand, 

(if we take et.j = 0 for j > k and Pj = 0 for j > I). Thus the generators of (c) all 
belong to ab and (c) cab. We may finally conclude that ab = (c), which com­
pletes the proof. 

1900. Prove that for any nonzero ideal a of R, Ria is finite. 

196~. Prove that the ring of integers ZF in any finite extension F of Q is a 
Dedekind domain. (This result is sometimes called thefulldamental theorem of 
algebraic number theory. The theorem above is a special case from which the 
general case follows.) 

197. Norm and Trace. Let the number field E be .a Galois extension of 
Q with the group <'§(EIQ) = {4>1' 4>2' . .. ,4>n}· To any element et. E E we 
assign two rational numbers, Net. and Tet., called respectively the norm and 
trace of et. . These are defined by 

and 

We make the obvious observations about norm and trace: 

(I) Norm is multiplicative, that is, N(et.P) = (Net.)(NfJ). 
(2) Trace is additive, that is, T(et. + fJ) = (Tet.) + (TfJ). 
(3) If et. is an algebraic integer, then Net. and Tet. are rational integers. 

197ot. Show that when [E : Q] = 2, an element et. E E is an algebraic integer 
if and only if Net. and Tet. are rational integers. 

197~. Determine the integers of Q(J - 5). 

198. Theorem. For p prime and p = e2ni
/
p

, the Kummer ring Z(p) is a 
Dedekind domain. 

Proof. In view of the preceding theorem (196), we need to establish only 
that Z(p) is the ring of integers of Q(p), which is the splitting field of x P - I 
over Q and consequently a Galois extension of Q. 



196 6 Classical Ideal Theory 

We recall from 134 that the Galois group <'§(Q(p)/Q) is isomorphic to Z; 
and that it consists of the p - 1 automorphisms ¢I, ¢2, ... , ¢p_1 determined 
by ¢k p = pk. We also recall that the irreducible monic polynomial for p over 
Q is the cyclotomic polynomial <1>p given by 

<1>px = XP-I + xp- 2 + ... + x + 1 = (x - p)(x - p2) ... (x _ pP-I). (*) 

If we take x = I in (*), we get <1>/1) = p = N(I - p). This shows among other 
things that 1 - p is prime in ZQ(p), the ring of algebraic integers of Q(p). 

Next we remark that (1 - p) n Z = (p) in ZQ(p) or, in other words, a 
rational integer divisible by (1 - p) is divisible by p. This is easy to see since 
(1 - p) n Z is a proper ideal of Z and contains (p), which is a maximal ideal. 

Let (1. be an algebraic integer of Q(p), that is, an element of ZQ(p). Since the 
numbers p, p2, ... , pP-I form a basis for Q(P) over Q, we can write (1. uniquely 
in the form 

where ai' a2, ... , ap_1 E Q. We will have (1. E Z(p) if we can show that 
ai' a2, ... , ap_1 E Z. First we remark that 

1 + T(l) = 1 + l + p2k + ... + p(p-I)k = <1>p(l) = Po p, {
if I k 
if p,tk. 

Therefore T(I) = p - 1 and T(l) = -1 for k = 1,2, ... , p - 1. Next we 
compute the trace of (1 - p)p- i(1. for i = 1,2, . .. , p - 1. We have 

p-I 
T[(I - p)p-i(1.] = T[(I - p)p-i I ajpj] 

j=1 

p-I 
= I ajT[(l - p)pj-i] 

j=1 

p-I 
= I aj[T(pj-i) - T(pj-i+I)] 

j=1 

{

pal if i= 1, 

= p(ai - ai-I) if i = 2, 3, ... , p - 1. 

However, (1 - p)p-i is an algebraic integer divisible by 1 - p, and conse­
quently its trace is a rational integer divisible by 1 - p (why?) and, hence, 
also divisible by p. As a result all the numbers al> a2 - at, ... , ap _ 1 - ap _ 2 
are rational integers, from which it follows that (1. E Z(p). Thus we have shown 
that Z(p)::::> ZQ(p), Therefore Z(p) = ZQ(p) and we are finished. 

198a. Show that in Z(p) the ideal (p) has the factorization (1 - py-I. 

198p. Let q be a rational prime. When is (q) a prime ideal of Z(p)? 
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N natural numbers 
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Z integers 

Zn integers modulo n 
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Q rational numbers 
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5% x 8Jh. 20351-4 Pa. $6.95 

THE I CHING (THE BOOK OF CHANGES), translated by James Legge. 
Complete translation of basic text plus appendices by Confucius, and 
Chinese commentary of most penetrating divination manual ever prepared. 
Indispensable to study of early Oriental civilizations, to . modern inquiring 
reader. 448pp. 50/8 x 8Jh. 21062-6 Pa. $6.00 

THE EGYPTIAN BOOK OF THE DEAD, E. A. Wallis Budge. Complete 
reproduction of Ani's papyrus, finest ever found. Full hieroglyphic text, in­
terlinear transliteration, word for word translation, smooth translation. 
Basic work, for Egyptology, for modern study of psychic matters. Total of 
533pp. 6Jh x 9%. (USCOI) 21866-X Pa. $8.50 

THE GODS OF THE EGYPTIANS, E. A. Wallis Budge. Never excelled 
for richness, fullness: all gods, goddesses, demons, mythical figures of 
Ancient Egypt; their legends, rites, incarnations, variations, powers, etc. 
Many hieroglyphic texts cited. Over 225 illustrations, plus 6 color plates. 
Total of 988pp. 6% x 9%. (EBB) 

22055-9, 22056-7 Pa., Two-vol. set $20.00 

THE STANDARD BOOK OF QUILT MAKING AND COLLECTING, 
Marguerite Ickis. Full information, full-sized patterns for making 46 tra­
ditional quilts, also 150 other patterns. Quilted cloths, lame, satin quilts, 
etc. 483 illustrations. 273pp. 6% x 9%. 20582-7 Pa. $5.95 

CORAL GARDENS AND THEIR MAGIC, Bronsilaw Malinowski. Classic 
study of the methods of tilling the soil and of agricultural rites in the 
Trobriand Islands of Melanesia. Author is one of the most important figures 
in the field of modern social anthropology. 143 illustrations. Indexes. Total 
of 911pp. of text. 5% x 8lf4 . (Available in U.S. only) 

23597-1 Pa. $12.95 
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THE PHILOSOPHY OF HISTORY, Georg W. Hegel. Great classic of 
Western thought develops concept that history is not chance but a rational 
process, the evolution of freedom. 457pp. 5% x 81,2. 20112-0 Pa. $6.00 

LANGUAGE, TRUTH AND LOGIC, Alfred J. Ayer. Famous, clear intro­
duction to Vienna, Cambridge schools of Logical Positivism. Role of phil­
osophy, elimination of metaphysics, nature of analysis, etc. 160pp. 
5% x 81,2 . (USCO) 20010-8 Pa. $2.50 

A PREFACE TO LOGIC, Morris R. Cohen. Great City College teacher 
in renowned, easily followed exposition of formal logic, probability, values, 
logic and world order and similar topics; no previous background needed. 
209pp. 5% x 81,2. 23517-3 Pa. $4.95 

REASON AND NATURE, Morris R. Cohen. Brilliant analysis of reason and 
its multitudinous ramifications by charismatic teacher. Interdisciplinary, syn­
thesizing work widely praised when it first appeared in 1931. Second 
(1953) edition. Indexes. 496pp. 5% x 8%. 23633-1 Pa. $7.50 

AN ESSAY CONCERNING HUMAN UNDERSTANDING, John Locke. 
The only complete edition of enonnously important classic, with authorita­
tive editorial material by A. C. Fraser. Total of 1176pp. 5% x 8%. 

20530-4, 20531-2 Pa., Two-vol. set $16.00 

HANDBOOK OF MATHEMATICAL FUNCTIONS WITH FORMULAS, 
GRAPHS, AND MATHEMATICAL TABLES, edited by Milton Abramo­
witz and Irene A. Stegun. Vast compendium: 29 sets of tables, some to 
as high as 20 places. 1,046pp. 8 x 101,2. 61272-4 Pa. $17.95 

MATHEMATICS FOR THE PHYSICAL SCIENCES, Herbert S. Wilf. 
Highly acclaimed work offers clear presentations of vector spaces and 
matrices, orthogonal functions, roots of polynomial equations, conformal 
mapping, calculus of variations, etc. Knowledge of theory of. functions of 
real and complex variables is assumed. Exercises and solutions. Index. 
284pp. 50/8 x 8If4. 63635-6 Pa. $5.00 

THE PRINCIPLE OF RELATIVITY, Albert Einstein et al. Eleven most 
important original papers on special and general theories. Seven by Ein­
stein, two by Lorentz, one each by Minkowski and Weyl. All translated, 
unabridged. 216pp. 5% x 8%. 60081-5 Pa. $3.50 

THERMODYNAMICS, Enrico Fenni. A classic of modem science. Clear, 
organized treatment of systems, first and second laws, entropy, thennody­
namic potentials, gaseous reactions, dilute solutions, entropy constant. No 
math beyond calculus required. Problems. 16Opp. 5% x 81,2. 

60361-X Pa. $4.00 

ELEMENTARY MECHANICS OF FLUIDS, Hunter Rouse. Classic under­
graduate text widely considered to be far better than many later books. 
Ranges from fluid velocity and acceleration to role of compressibility in 
fluid motion. Numerous examples, questions, problems. 224 illustrations. 
376pp. 50/8 x 8If4. 63699-2 Pa. $7,.00 
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THE AMERICAN SENATOR, Anthony Trollope. Little known, long un­
available Trollope novel on a grand scale. Here are humorous comment 
on American vs. English culture, and stunning portrayal of a heroine! 
villainess. Superb evocation of Victorian village life. 561pp. 5% x 8%. 

23801-6 Pa. $7.95 

WAS IT MURDER? James Hilton. The author of Lost Horizon and Good­
bye, Mr. Chips wrote one detective novel (under a pen-name) which was 
quickly forgotten and virtually lost, even at the height of Hilton's fame. 
This edition brings it back-a finely crafted public school puzzle resplen­
dent with Hilton's stylish atmosphere. A thoroughly English thriller by 
the creator of Shangri-la. 252pp. 5% x 8. (Available in U.S. only) 

23774-5 Pa. $3.00 

CENTRAL PARK: A PHOTOGRAPHIC GUIDE, Victor Laredo and 
HeillY Hope Reed. 121 superb photographs show dramatic views of 
Central Park: Bethesda Fountain, Cleopatra's Needle, Sheep Meadow, the 
Blockhouse, plus people engaged in many park activities: ice skating, bike 
riding, etc. Captions by former Curator of Central Park, Henry Hope 
Reed, provide historical view, changes, etc. Also photos of N.Y. landmarks 
on park's periphery. 96pp. 8% x 11. 23750-8 Pa. $4 .. 50 

NANTUCKET IN THE NINETEENTH CENTURY, Clay Lancaster. 180 
rare photographs, stereo graphs, maps, drawings and floor plans recreate 
unique American island society. Authentic scenes of shipwreck, light­
houses, streets, homes are arranged in geographic sequence to provide 
walking-tour guide to old Nantucket existing today. Introduction, captions. 
160pp. 8% x 11%. 23747-8 Pa. $7.95 

STONE AND MAN: A PHOTOGRAPHIC EXPLORATION, Andreas 
Feininger. 106 photographs by Life photographer Feininger portray man's 
deep passion for stone through the ages. Stonehenge-like megaliths, forti­
fied towns, sculpted marble and crumbling tenements show textures, beau­
ties, fascination. 128pp. 9% x 10%. 23756-7 Pa. $5.95 

CIRCLES, A MATHEMATICAL VIEW, D. Pedoe. Fundamental aspects 
of college geometry, non-Euclidean geometry, and other branches of mathe­
matics: representing circle by point. Poincare model, isoperimetric prop­
erty, etc. Stimulating recreational reading. 66 figures. 96pp. 5% x 8%. 

63698-4 Pa. $3.50 

THE DISCOVERY OF NEPTUNE, Morton Grosser. Dra)11atic scientific 
history of the investigations leading up to the actual discovery of the 
eighth planet of our solar system. Lucid, well-researched book by well­
known historian of science. 172pp. 5% x 8%. 23726-5 Pa. $3.50 

THE DEVIL'S DICTIONARY. Ambrose Bierce. Barbed, bitter, brilliant 
witticisms in the fonn of a dictionary. Best, most ferocious satire America 
has produced. 145pp. 5% x 8%. 20487-1 Pa. $2.50 
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HISTORY OF BACTERIOLOGY, William Bulloch. The only compre­
hensive history of bacteriology from the beginnings through the 19th cen­
tury. Special emphasis is given to biography-Leeuwenhoek, etc. Brief 
accounts of 350 bacteriologists form a separate section. No clearer, fuller 
study, suitable to scientists and general readers, has yet been written. 52 
illustrations. 448pp. 5% x 8%. 23761-3 Pa. $6.50 

THE COMPLETE NONSENSE OF EDWARD LEAR, Edward Lear. All 
nonsense limericks, zany alphabets, Owl and Pussycat, songs, nonsense 
botany, etc., illustrated by Lear. Total of 321pp. 5% x 8%. (Available 
in U.S. only) 20167-8 Pa. $4.50 

INGENIOUS MATHEMATICAL PROBLEMS AND METHODS, Louis 
A. Graham. Sophisticated material from Graham Dial, applied and pure; 
stresses solution methods. Logic, number theory, networks, inversions, etc. 
237pp. 5% x 8%. 20545-2 Pa. $4.50 

BEST MATHEMATICAL PUZZLES OF SAM LOYD, edited by Martin 
Gardner. Bizarre, original, whimsical puzzles by America's greatest puzzler. 
From fabulously rare Cyclopedia, including famous 14-15 puzzles, the 
Horse of a Different Color, 115 more. Elementary math. 150 illustrations. 
167pp. 5% x 8%. 20498-7 Pa. $3.50 

THE BASIS OF COMBINATION IN CHESS, J. du Mont. Easy-to-follow, 
instructive book on elements of combination play, with chapters on each 
piece and every powerful combination team-two knights, bishop and 
knight, rook and bishop, etc. 250 diagrams. 218pp. 5% x 8%. (Available 
in U.S. only) 23644-7 Pa. $4.50 

MODERN CHESS STRATEGY, Ludek Pachman. The use of the queen, 
the active king, exchanges, pawn play, the center, weak squares, etc. 
Section on rook alone worth price of the book. Stress on the moderns. 
Often considered the most important book on strategy. 314pp. 5% x 8%. 

20290-9 Pa. $5.00 

LASKER'S MANUAL OF CHESS, Dr. Emanuel Lasker. Great world 
champion offers very thorough coverage of all aspects of chess. Combina­
tions, position play, openings, end game, aesthetics of chess, philosophy of 
struggle, much more. Filled with analyzed games. 390pp. 5% x 8%. 

20640-8 Pa. $5.95 

500 MASTER GAMES OF CHESS, S. Tartakower, J. du Mont. Vast 
collection of great chess games from 1798-1938, with much material no­
where else readily available. Fully annoted, arranged by opening for 
easier study. 664pp. 5% x 8%. 23208-5 Pa. $8.50 

A GUIDE TO CHESS ENDINGS, Dr. Max Euwe, David Hooper. One 
of the finest modern works on chess endings. Thorough analysis of the 
most frequently encountered endings by former world champion. 331 
examples, each with diagram. 248pp. 5% x 8%. 23332-4 Pa. $3.95 
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THE COMPLETE BOOK OF DOLL MAKING AND COLLECTING, 
Catherine Christopher. Instructions, patterns for dozens of dolls, from rag 
doll on up to elaborate, historically accurate figures. Mould faces, sew 
clothing, make doll houses, etc. Also collecting information. Many illus­
trations. 288pp. 6 x 9. 22066-4 Pa. $4.95 

THE DAGUERREOTYPE IN AMERICA, Beaumont Newhall. Wonderful 
portraits, 1850's towns capes, landscapes; full text plus 104 photographs. 
The basic book. Enlarged 1976 edition. 272pp. 81f4 x 111f4. 

23322-7 Pa. $,7.95 

CRAFTSMAN HOMES, Gustav Stickley. 296 architectural drawings, floor 
plans, and photographs illustrate 40 different kinds of "Mission-style" 
homes from The Craftsman (1901-16), voice of American style of simplicity 
and organic harmony. Thorough coverage of Craftsman idea in text and 
picture, now collector's item. 224pp. 8% x 11. 23791-5 Pa. $6.50 

PEWTER-WORKING: INSTRUCTIONS AND PROJECTS, Burl N. Os­
born. & Gordon O. Wilber. Introduction to pewter-working for amateur 
craftsman. History and characteristics of pewter; tools, materials, step-by­
step instructions. Photos, line drawings, diagrams. Total of 160pp. 
7% x 10%. 23786-9 Pa. $3.50 

THE GREAT CHICAGO FIRE, edited by David Lowe, 10 dramatic, eye­
witness accounts of the 1871 disaster, including one of the aftermath and 
rebuilding, plus 70 contemporary photographs and illustrations of the 
ruins-courthouse, Palmer House, Great Central Depot, etc. Introduction 
by David Lowe. 87pp. 81f4 x 11. 23771-0 Pa. $4.00 

SILHOUETTES: A PICTORIAL ARCHIVE OF VARIED ILLUSTRA­
TIONS, edited by Carol Belanger Grafton. Over 600 silhouettes from the 
18th to 20th centuries include profiles and full figures of men and women, 
children, birds and animals, groups and scenes, nature, ships, an alphabet. 
Dozens of uses for commercial artists and craftspeople. 144pp. 80/8 x 111f4. 

23781-8 Pa. $4.50 

ANIMALS: 1,419 COPYRIGHT-FREE ILLUSTRATIONS OF MAM­
MALS, BIRDS, FISH, INSECTS, ETC., edited by Jim Harter. Clear wood 
engravings present, in extremely lifelike poses, over 1,000 species of ani­
mals. One of the most extensive copyright-free pictorial sourcebooks of its 
kind. Captions. Index. 284pp. 9 x 12. 23766-4 Pa. $8.95 

INDIAN DESIGNS FROM ANCIENT ECUADOR, Frederick W. Shaffer. 
282 original designs by pre-Columbian Indians of Ecuador (500-1500 A.D.). 
Designs include people, mammals, birds, reptiles, fish, plants, heads, geo­
metric designs. Use as is or alter for advertising, textiles, leathercraft, etc. 
Introduction. 95pp. 8% x 111f4. 23764-8 Pa. $4.50 

SZIGETI ON THE VIOLIN, Joseph Szigeti. Genial, loosely structured 
tour by premier violinist, featuring a pleasant mixture of reminiscenes, 
insights into great music and musicians, innumerable tips for practicing 
violinists. 385 musical passages. 256pp. 50/8 x 81f4. 23763-X Pa. $4.00 
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TONE POEMS, SERIES II: TILL EULENSPIEGELS LUSTIGE 
STREICHE, ALSO SPRACH ZARATHUSTRA, AND EIN HELDEN­
LEBEN, Richard Strauss. Three important orchestral works, including very 
popular Till Eulenspiegel's Marry Pranks, reproduced in full score from 
original editions. Study score. 315pp. 9% x 12%. (Available in U.S. only) 

23755-9 Pa. $8.95 

TONE POEMS, SERIES I: DON JUAN, TOD UND VERKLARUNG 
AND DON QUIXOTE, Richard Strauss. Three of the most often per­
formed and recorded works in entire orchestral repertoire, reproduced in 
full score from original editions. Study score. 286pp. 9% x 12¥4. (Avail­
able in U.S. only) 23754-0 Pa. $8.95 

11 LATE STRING QUARTETS, Franz Joseph Haydn. The form which 
Haydn defined and "brought to perfection." (Grove's). 11 string quartets 
in complete score, his last and his best. The first in a projected series of 
the complete Haydn string quartets. Reliable modern Eulenberg edition, 
otherwise difficult to obtain. 320pp. 8% x 11%. (Available in U.S. only) 

23753-2 Pa. $8.95 

FOURTH, FIFTH AND SIXTH SYMPHONIES IN FULL SCORE, Peter 
Ilyitch Tchaikovsky. Complete orchestral scores of Symphony No. 4 in 
F Minor, Op. 36; Symphony No. 5 in E Minor, Op. 64; Symphony No. 6 
in B Minor, "Pathetique," Op. 74. Bretikopf & Hartel eds. Study score. 
480pp. 9% x 12%. 23861-X Pa. $10.95 

THE MARRIAGE OF FIGARO: COMPLETE SCORE, Wolfgang A. 
Mozart. Finest comic opera ever written. Full score, not to be confused 
with piano renderings. Peters edition. Study score. 448pp. 9% x 12¥4. 
(Available in U.S. only) 23751-6 Pa. $12.95 

"IMAGE" ON THE ART AND EVOLUTION OF THE FILM, edited by 
Marshall 0eutelbaum. Pioneering book brings together for first time 38 
groundbreaking articles on early silent films from Image and 263 illustra­
tions newly shot from rare prints in the collection of the International 
Museum of Photography. A landmark work. Index. 256pp. 8% x 11. 

23777 -X Pa. $8.95 

AROUND-THE-WORLD COOKY BOOK, Lois Lintner Sumption and 
Marguerite Lintner Ashbrook. 373 cooky and frosting recipes from 28 
countries (America, Austria, China, Russia, Italy, etc.) include Viennese 
kisses, rice wafers, London strips, lady fingers, hony, sugar spice, maple 
cookies, etc. Clear instructions. All tested. 38 drawings. 182pp. 5% x 8. 

23802-4 Pa. $2.75 

THE ART NOUVEAU STYLE, edited by Roberta Waddell. 579 rare 
photographs, not available elsewhere, of works in jewelry, metalwork, glass, 
ceramics, textiles, architecture and furniture by 175 artists-Mucha, Seguy, 
Lalique, Tiffany, Gaudin, Hohlwein, Saarinen, and many others. 288pp. 
8% x 11¥4. 23515-7 Pa. $8.95 
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THE CURVES OF LIFE, Theodore A. Cook. Examination of shells, leaves, 
horns, human body, art, etc., in "the classic reference on how the golden 
ratio applies to spirals and helices in nature . . " "-Martin Gardner. 
426 illustrations. Total of 512pp. 5% x 8%. 23701-X Pa. $6.95 

AN ILLUSTRATED FLORA OF THE NORTHERN UNITED STATES 
AND CANADA, Nathaniel L. Britton, Addison Brown. Encyclopedic work 
covers 4666 species, ferns on up. Everything. Full botanical information, 
illustration for each. This earlier edition is preferred by many to more 
recent revisions. 1913 edition. Over 4000 illustrations, total of 2087pp. 
6% x 91/4. 22642-5, 22643-3, 22644-1 Pa., Three-vol. set $28.50 

MANUAL OF THE GRASSES OF THE UNITED STATES, A. S. Hitch­
cock, U.S. Dept. of Agriculture. The basic study of American grasses, 
both indigenous and escapes, cultivated and wild. Over 1400 species. Full 
descriptions, information. Over 1100 maps, illustrations. Total of 1051pp. 
5% x 8%. 22717-0, 22718-9 Pa., Two-vol. set $17.00 

THE CACTACEAE" Nathaniel L. Britton, John N. Rose. Exhaustive, 
definitive. Every cactus in the world. Full botanical descriptions. Thorough 
statement of nomenclatures, habitat, detailed finding keys. The one book 
needed by every cactus enthusiast. Over 1275 illustrations. Total of 108Opp. 
8 x 1O¥4. 21191-6, 21192-4 Clothbd., Two-vol. set $50.00 

AMERICAN MEDICINAL PLANTS, Charles F. Millspaugh. Full descrip­
tions, 180 plants covered: history; physical description; methods of prepa­
ration with all chemical constituents extracted; all claimed curative or 
adverse effects. 180 full-page plates. Classification table. 804pp. 6% x 91/4. 

23034-1 Pa. $13.95 

A MODERN HERBAL, Margaret Grieve. Much the fullest, most exact, 
most useful compilation of herbal material. Gigantic alphabetical encyclo­
pedia, from aconite to zedoary, gives botanical information, medical prop­
erties, folklore, economic uses, and much else. Indispensable to serious 
reader. 161 illustrations. 888pp. 6% x 91/4. (Available in U.S. only) 

22798-7, 22799-5 Pa., Two-vol. set $15.00 

THE HERBAL or GENERAL HISTORY OF PLANTS, John Gerard. 
The 1633 edition revised and enlarged by Thomas Johnson. Containing 
almost 2850 plant descriptions and 2705 superb illustrations, Gerard's 
Herbal is a monumental work, the book all modern English herbals are 
derived from, the one herbal every serious enthusiast should have in its 
entirety. Original editions are worth perhaps $750. 1678pp. 8% x 12¥4. 

23147-X Clothbd. $7·5.00 

MANUAL OF THE TREES OF NORTH AMERICA, Charles S. Sargent. 
The basic survey of every native tree and tree-like shrub, 717 species in 
all. Extremely full descriptions, information on habitat, growth, locales, 
economics, etc. Necessary to every serious tree lover. Over 100 finding 
keys. 783 illustrations. Total of 986pp. 5% x 8%. 

20277-1, 20278-X Pa., Two-vol. set $12.00 
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GREAT NEWS PHOTOS AND THE STORIES BEHIND THEM, John 
Faber. Dramatic volume of 140 great news photos, 1B55 through 1976, 
and revealing stories behind them, with both historical and technical in­
formation. Hindenburg disaster, shooting of Oswald, nomination of Jimmy 
Carter, etc. 160pp. BIf4 x 11. 23667-6 Pa. $6.00 

CRUICKSHANK'S PHOTOGRAPHS OF BIRDS OF AMERICA, Allan D. 
Cruickshank. Great ornithologist, photographer presents 177 closeups, 
groupings, panoramas, Bightings, etc., of about 150 different birds. Ex­
panded Wings in the Wilderness. Introduction by Helen G. Cruickshank. 
191pp. BIf4 x 11. 23497-5 Pa. $·7.95 

AMERICAN WILDLIFE AND PLANTS, A. C. Martin, et al. Describes 
food habits of more than 1000 species of mammals, birds, fish. Special 
treatment of important food plants. Over 300 illustrations. 500pp. 5% x Blh. 

20793-5 Pa. $6.50 

THE PEOPLE CALLED SHAKERS, Edward D. Andrews. Lifetime of 
research, definitive study of Shakers: origins, beliefs, practices, dances, 
social organization, furniture and crafts, impact on 19th-century USA, 
present heritage. Indispensable to student of American history, collector. 
33 illustrations. 351pp. 5% x B¥.!. 210BI-2 Pa. $4.50 

OLD NEW YORK IN EARLY PHOTOGRAPHS, Mary Black. New York 
City as it was in 1B53-1901, through 196 wonderful photographs from 
N.-Y. Historical Society. Great Blizzard, Lincoln's funeral procession, 
great buildings. 22Bpp. 9 x 12. 22907-6 Pa. $B.95 

MR. LINCOLN'S CAMERA MAN: MATHEW BRADY, Roy Meredith. 
Over 300 Brady photos reproduced directly from original negatives, 
photos. Jackson, Webster, Grant, Lee, Carnegie, Barnum; Lincoln; Battle 
Smoke, Death of Rebel Sniper, Atlanta Just After Capture. Lively com­
mentary. 36Bpp. B% x 11 If4. 23021-X Pa. $11.95 

TRAVELS OF WILLIAM BARTRAM, William Bartram. From 1773-B, 
Bartram explored Northern Florida, Georgia, Carolinas, and reported on 
wild life, plants, Indians, early settlers. Basic account for period, enter­
taining reading. Edited by Mark Van Doren. 13 illustrations. 141pp. 
50/8 x B¥.!. 20013-2 Pa. $6.00 

THE GENTLEMAN AND CABINET MAKER'S DIRECTOR, Thomas 
Chippendale. Full reprint, 1762 style book, most influential of all time; 
chairs, tables, sofas, mirrors, cabinets, etc. 200 plates, plus 24 photographs 
of surviving pieces. 249pp. 9% x 12%. 21601-2 Pa. $8.95 

AMERICAN CARRIAGES, SLEIGHS, SULKIES AND CARTS, edited by 
Don H. Berkebile. 16B Victorian illustrations from catalogues, trade journals, 
fully captioned. Useful for artists. Author is Assoc. Curator, Div. of Trans­
portation of Smithsonian Institution. 16Bpp. B¥.! x 9¥.!. 

23328-6 Pa. $5.00 
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SECOND PIA TIGORSKY CUP, edited by Isaac Kashdan. One of the 
greatest tournament books ever produced in the English language. All 90 
games of the 1966 tournament, annotated by players, most annotated by 
both players. Features Petrosian, Spassky, Fischer, Larsen, six others. 
22Bpp. 5% x Blh. 23572-6 Pa. $3.50 

ENCYCLOPEDIA OF CARD TRICKS, revised and edited by Jean Hugard. 
How to perform over 600 card tricks, devised by the world's greatest 
magicians: impromptus, spelling tricks, key cards, using special packs, 
much, much more. Additional chapter on card technique. 66 illustrations. 
402pp. 5% x Blh. (Available in U.S. only) 21252-1 Pa. $5.95 

MAGIC: STAGE ILLUSIONS, SPECIAL EFFECTS AND TRICK PHO­
TOGRAPHY, Albert A. Hopkins, Henry R. Evans. One of the great classics; 
fullest, most authorative explanation of vanishing lady, levitations, scores 
of other great stage effects. Also small magic, automata, stunts. 446 illus­
trations. 556pp. 5% x Blh. 23344-B Pa. $6.95 

THE SECRETS OF HOUDINI, J. C. Cannell. Classic study of Houdini's 
incredible magic, exposing closely-kept professional secrets and revealing, 
in general terms, the whole art of stage magic. 67 illustrations. 279pp. 
5% x Blh. 22913-0 Pa. $4.00 

HOFFMANN'S MODERN MAGIC, Professor Hoffmann. One of the best, 
and best-known, magicians' manuals of the past century. Hundreds of 
tricks from card tricks and simple sleight of hand to elaborate illusions 
involving construction of complicated machinery. 332 illustrations. 563pp. 
5% x Blh. 23623-4 Pa. $6.95 

THOMAS NAST'S CHRISTMAS DRAWINGS, Thomas Nast. Almost all 
Christmas drawings by creator of image of Santa Claus as we know it, 
and one of America's foremost illustrators and political cartoonists. 66 
illustrations. 3 illustrations in color on covers. 96pp. B% x 1l¥4. 

23660-9 Pa. $3.50 

FRENCH COUNTRY COOKING FOR AMERICANS, Louis Diat. 500 
easy-to-make, authentic provincial recipes compiled by former head chef 
at New York's Fitz-Carlton Hotel: onion soup, lamb stew, potato pie, more. 
309pp. 5% x Blh. 23665-X Pa. $3.95 

SAUCES, FRENCH AND FAMOUS, Louis Diat. Complete book gives over 
200 specific recipes: bechamel, Bordelaise, hollandaise, Cumberland, apri­
cot, etc. Author was one of this century's finest chefs, originator of 
vichyssoise and many other dishes. Index. 156pp. 5% x B; 

23663-3 Pa. $2.75 

TOLL HOUSE TRIED AND TRUE RECIPES, Ruth Graves Wakefield. 
Authentic recipes from the famous Mass. restaurant: popovers, veal and 
ham loaf, Toll House baked beans, chocolate cake crumb pudding, much 
more. Many helpful hints. Nearly 700 recipes. Index. 376pp. 5% x Blh. 

23560-2 Pa. $4.95 
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ILLUSTRATED GUIDE TO SHAKER FURNITURE, Robert Meader. 
Director, Shaker Museum, Old Chatham, presents up-to-date coverage of 
all furniture and appurtenances, with much on local styles not available 
elsewhere. 235 photos. 146pp. 9 x 12. 22819-3 Pa. $6.95 

COOKING WITH BEER, Carole Fahy. Beer has as superb an effect on 
food as wine, and at fraction of cost. Over 250 recipes for appetizers, 
soups, main dishes, desserts, breads, etc. Index. 144pp. 5% x 8%. (Avail­
able in U.S. only) 23661-7 Pa. $3.00 

STEWS AND RAGOUTS, Kay Shaw Nelson. This international cookbook 
0ffers wide range of 108 recipes perfect for everyday, special occasions, 
meals-in-themselves, main dishes. Economical, nutritious, easy-to-prepare: 
goulash, Irish stew, boeuf bourguignon, etc. Index. 134pp. 5% x 81,2. 

23662-5 Pa. $3.95 

DELICIOUS MAIN COURSE DISHES, Marian Tracy. Main courses are 
the most important part of any meal. These 200 nutritious, economical 
recipes from around the worlrl make every meal a delight. "I . . . have 
found it so useful in my own household,"-N.Y. Times. Index. 219pp. 
5% x 81,2. 23664-1 Pa. $3.95 

FIVE ACRES AND INDEPENDENCE, Maurice G. Kains. Great back­
to-the-land classic explains basics of self-sufficient farming: economics, 
plants, crops, animals, orchards, soils, land selection, host of other neces­
sary things. Do not confuse with skimpy faddist literature; Kains was 
one of America's greatest agriculturalists. 95 illustrations. 397pp. 5% x 8%. 

20974-1 Pa. $4.95 

A PRACTICAL GUIDE FOR THE BEGINNING FARMER, Herbert 
Jacobs. Basic, extremely useful first book for anyone thinking about moving 
to the country and starting a farm. Simpler than Kains, with greater em­
phasis on country living in general. 246pp. 5% x 8%. 

23675-7 Pa. $3.95 

PAPERMAKING, Dard Hunter. Definitive book on the subject by the fore­
most authority in the field. Chapters dealing with every aspect of history 
of craft in every part of the world. Over 320 illustrations. 2nd, revised and 
enlarged (1947) edition. 672pp. 5% x 81,2. 23619-6 Pa. $8.95 

THE ART DECO STYLE, edited by Theodore Menten. Furniture, jewelry, 
metalwork, ceramics, fabrics, lighting fixtures, interior decors, exteriors, 
graphics from pure French sources. Best sampling around. Over 400 
photographs. 183pp. 8% x 11 Y4. 22824-X Pa. $6.95 

ACKERMANN'S COSTUME PLATES, Rudolph Ackermann. Selection of 
96 plates from the Repository of Arts, best published source of costume 
for English fashion during the early 19th century. 12 plates also in color. 
Captions, glossary and introduction by editor Stella Blum. Total of 12Opp. 
80/8 x 11%. 23690-0 Pa. $5.00 
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THE ANATOMY OF THE HORSE, George Stubbs. Often considered the 
great masterpiece of animal anatomy. Full reproduction of 1766 edition, 
plus prospectus; original text and modernized text. 36 plates. Introduction 
by Eleanor Garvey. 121pp. 11 x 14314. 23402-9 Pa. $8.95 

BRIDGMAN'S LIFE DRAWING, George B. Bridgman. More than 500 
illustrative drawings and text teach you to abstract the body into its major 
masses, use light and shade, proportion; as well as specific areas of anatomy, 
of which Bridgman is master. 192pp. 6lf.! x 91f4. (Available in U.S. only) 

22710-3 Pa. $4.50 

ART NOUVEAU DESIGNS IN COLOR, Alphonse Mucha, Maurice 
Verneuil, Georges Auriol. Full-color reproduction of Combinaisons orne­
mentales (c. 1900) by Art Nouveau masters. Floral, animal, geometric, 
interlacings, swashes-borders, frames, spots-all incredibly beautiful. 60 
plates, hundreds of designs. 9% x 8-1/16. 22885-1 Pa. $4.50 

FULL-COLOR FLORAL DESIGNS IN THE ART NOUVEAU STYLE, 
E. A. Seguy. 166 motifs, on 40 plates, from Les lleurs et leurs applications 
decoratives (1902): borders, circular designs, repeats, allovers, "spots." 
All in authentic Art Nouveau colors. 48pp. 9% x 121f4. 

23439-8 Pa. $6.00 

A DIDEROT PICTORIAL ENCYCLOPEDIA OF TRADES AND IN­
DUSTRY, edited by Charles C. Gillispie. 485 most interesting plates from 
the great French Encyclopedia of the 18th century show hundreds of 
working figures, artifacts, process, land and cityscapes; glassmaking, paper­
making, metal extraction, construction, weaving, making furniture, clothing, 
wigs, dozens. of other activities. Plates fully explained. 920pp. 9 x 12. 

22284-5, 22285-3 Clothbd., Two-vol. set $50.00 

HANDBOOK OF EARLY ADVERTISING ART, Clarence P. Hornung. 
Largest collection of copyright-free early and antique advertising art ever 
compiled. Over 6,000 illustrations, from Franklin's time to the 1890's for 
special effects, novelty. Valuable source, almost inexhaustible. 
Pictorial Volume. Agriculture, the zodiac, animals, autos, birds, Christmas, 
fire engines, flowers, trees, musical instruments, ships, games and sports, 
much more. Arranged by subject matter and use. 237 plates. 288pp. 9 x 12. 

20122-8 Clothbd. $15.00 

Typographical Volume. Roman and Gothic faces ranging from 10 point to 
300 point, "Barnum," German and Old English faces, script, logotypes, 
scrolls and flourishes, 1115 ornamental initials, 67 complete alphabets, 
more. 310 plates. 320pp. 9 x 12. 20123-6 Clothbd. $15.00 

CALLIGRAPHY (CALLIGRAPHIA LATINA), J. G. Schwandner. High 
point of 18th-century ornamental calligraphy. Very ornate initials, scrolls, 
borders, cherubs, birds, lettered examples. 172pp. 9 x 13. 

20475-8 Pa. $7.95 



CATALOGUE OF DOVER BOOKS 

GEOMETRY, RELATIVITY AND THE FOURTH DIMENSION, Rudolf 
Rucker. Exposition of fourth dimension, means of visualization, concepts 
of relativity as Flatland characters continue adventures. Popular, easily 
followed yet accurate, profound. 141 illustrations. 133pp. 5% x 8¥.!. 

23400-2 Pa. $2.75 

THE ORIGIN OF LIFE, A. I. Oparin. Modern classic in biochemistry, the 
first rigorous examination of possible evolution of life from nitrocarbon com­
pounds. Non-technical, easily followed. Total of 295pp. 5% x 8¥.!. 

60213-3 Pa. $5.95 

PLANETS, STARS AND GALAXIES, A. E. Fanning. Comprehensive in­
troductory survey: the sun, solar system, stars, galaxies, universe, cosmology; 
quasars, radio stars, etc. 24pp. of photographs. 189pp. 5% x 8¥.!. (Avail­
able in U.S. only) 21680-2 Pa. $3.75 

THE THIRTEEN BOOKS OF EUCLID'S ELEMENTS, translated with 
introduction and commentary by Sir Thomas L. Heath. Definitive edition. 
Textual and linguistic. notes, mathematical analysis, 2500 years of critical 
commentary. Do not confuse with abridged school editions. Total of 1414pp. 
5% x 8¥.!. 60088-2, 60089-0, 60090-4 Pa., Three-vol. set $19.50 

Prices subject to change without notice. 

Available at your book dealer or write for free catalogue to Dept. GI, Dover 
Publications, Inc.,.31 East 2nd St.MinJeola:.,'N.Y. ll1SPl. Dover publishes more 
than 175 books each year on science, elementary and advanced mathematics, 
biology, music, art, literary history, social sciences and other areas. 
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